牛乐田,李春娥,王英,等.陕西中部一次冷涡飑线天气特征分析 [J].陕西气象,2014 (4):7-10. 文章编号:1006-4354 (2014) 04-0007-04

陕西中部一次冷涡飑线天气特征分析

牛乐田,李春娥,王 英,刘 帆,胡 伟,许 玮 (咸阳市气象局,陕西咸阳 712000)

摘 要:对 2013-07-31 陕西中部地区一次罕见的强对流天气过程气象要素演变及雷达回波特征进行分析,发现该次过程为一次典型飑线天气过程。对此次飑线的生成原因、变化特征进行综合分析,结果表明:此次飑线天气过程是在高空冷涡后部西北气流控制的天气环流形势下出现,高空冷平流和低层暖平流的配置加剧了层结不稳定性。雷达回波图上,飑线以后续线型为主,呈典型的带状回波;强回波的雷达反射率因子、强风速辐合带、垂直累积液态水含量高值中心强弱交替等特征,对此类飑线天气的发生有较好的指示意义。

关键词: 飑线; 低涡; 层结稳定度; 雷达回波; 垂直累积液态水含量 (VIL)

中图分类号: P458.11 文献标识码: A

飑线是许多雷暴单体(其中包括若干超级 单体)侧向排列而形成的强对流云带,其水平尺 度通常为几百公里,典型生命期约6~12h,常 带来灾害性大风和局地暴雨,有时还伴有冰雹和 龙卷风,是一种具有短时巨大破坏力的天气系 统[1]。气象工作者对飑线进行了深入研究。丁一 汇等[2]根据我国 18 个飑线个例, 研究了飑线发 生的天气背景、触发条件和形成的物理条件(热 力和动力学条件)。张培昌等[1]根据雷达回波的 不同表现形态,将飑线划分为断续线型、后续线 型、离散区线型以及嵌套区线型4种类型。侯建 忠等[3]在黄土高原一次冷涡飑线的综合分析与数 值模拟中指出,强对流主要出现在冷涡中心的西 南侧及南侧,在这个部位的大气层结常常是不稳 定的,有利于中尺度天气系统的发展,激发不稳 定能量释放,造成强雷暴天气发生。姬鸿丽等[4] 分析了影响洛阳的一次中尺度飑线天气过程,认 为高空冷涡后部冷空气的入侵加剧了层结的不稳 定而造成较强飑线天气的发生、发展。刘子臣[5] 认为高空冷涡是夏季造成我国西北地区强雷暴和 强飑线天气的主要系统之一,当蒙古东部与我国东北地区 500 hPa上有一冷涡时,冷涡后部的偏北气流将会影响陕西大部。本文利用常规气象资料、NCEP1°×1°6 h资料、卫星云图和多普勒雷达资料对陕西中部 2013 年 7 月 31 日飑线天气过程的要素特征演变、环流形势、雷达回波特征等综合分析,旨在加深对飑线天气的认识,建立此类天气的预报思路。

1 飑线气象要素演变及环流特征

1.1 气象要素演变

2013-07-31 夜间宝鸡东部、咸阳、西安、渭南等地区先后出现雷电、大风、短时暴雨等强对流天气。不少测站气压、温度、湿度等要素均反映明显,以咸阳和蓝田两个测站为例,8月1日00时、01时两站分别出现11.5 m/s、16.5 m/s的大风,关中共有11测站出现6级以上大风;1日02时咸阳、蓝田3h变压分别为4.1 hPa和5.8 hPa。7月31日22时—8月1日02时关中地区出现持续时间短、分布不均的强降水,降水中心位于关中中东部,最大为淳化强村

收稿日期: 2013-12-20

作者简介: 牛乐田(1980-), 男, 汉族, 陕西户县人, 工程师, 从事短期天气预报研究。

81.4 mm。从咸阳站逐时气象要素变化(图 1)可见,气象要素具有以下变化特点:风速迅速增大到极值后又迅速减小,变化最剧烈;气压缓慢降低后迅速升高;气温一直趋于降低,相对湿度先变化较小,后快速增大,与降水出现时段相对应。从 7 月 31 日夜间西安多普勒雷达基本反射

率(图略)看,21时开始陕西中部地区出现了NE—SW 走向的带状对流回波带,其长、宽之比大于5:1,分析强对流系统特征及其过境时气象要素演变发现,此次过程为典型的飑线天气过程。

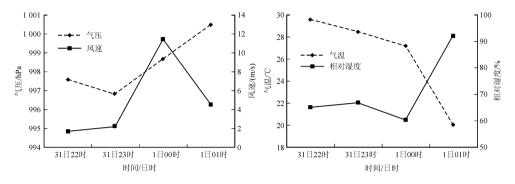


图 1 2013-07-31-08-01 咸阳站飑线经过前后气象要素变化

1.2 环流特征

1.2.1 对流层中上层冷涡特征 7月下旬后期,500~300 hPa高度场(图略)上,西伯利亚与贝加尔湖之间有宽广的低值系统,低涡中心位于75°E~95°E、50°N~60°N范围内,高原以东到陕西处于冷涡底部西北气流之中。7月31日20时,冷涡东移南压过程中不断分裂冷空气,贝加尔湖与蒙古之间低值环流加强,并对应有冷中心,300hPa高空冷槽位于河套西部,500hPa高空冷槽位于宁夏一陕北地区一华北,槽后部均有较强冷平流;300hPa高度场上冷涡底部有大于32m/s的高空急流存在,陕西关中地区位于高空急流右后侧强辐散区中,可见,深厚低涡后部的较强冷平流和其南侧高空急流的强辐散作用,为本次强对

 流天气提供了极其有利的环流背景场。

1.2.2 温度场分析 7月31日20时,300 hPa 河套以西有冷空气中心存在(图2a),陕西西部约5个经距范围内有大于10℃的温度梯度,等温线密集区在甘肃南部、宁夏、陕西西部之间,呈东北一西南走向。850 hPa整个高原地区为暖区(图2b),陕西中北部到宁夏之间有大于28℃的暖中心,该暖中心向东南方向移动,引起垂直方向温度梯度进一步增强,为飑线的发生、发展积累了大量的不稳定能量。8月1日02时,850 hPa 关中地区温度迅速降到24℃以下,此次飑线过程逐渐结束。由此可见,产生飑线的地区大气在垂直方向有着明显的高层冷平流和低层暖平流。

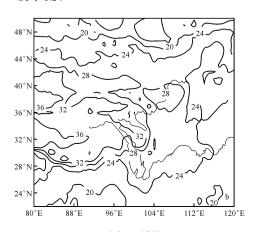


图 2 2013-07-31T20 300 hPa (a) 和 850 hPa (b) 温度场 (单位:℃)

2 层结稳定度及水汽条件

2.1 层结稳定度

在温度对数压力图(图略)上,7月31日08时西安 $\Delta\theta_{se}$ (850 与 500 hPa 的 θ_{se} 差)为17.8 \mathbb{C} , K 指数为 26 \mathbb{C} , 沙氏指数为一4.6 \mathbb{C} , 大气层结非常不稳定; 20 时西安 $\Delta\theta_{se}$ 为11.3 \mathbb{C} , K 指数为 39 \mathbb{C} , 沙氏指数为一0.25 \mathbb{C} , 大气层结为弱不稳定。西安 08 时抬升凝结高度为 1 061 m,20 时为 2 068 m,不稳定能量面积明显增大。

2.2 水汽条件

高层干冷空气,低层暖湿空气是不稳定度增大的重要原因。7月31日西安站08:00探空图(图略)上,850 hPa以下各等压面比湿大于10g/kg,平均为15.8 g/kg,850 hPa以上比湿迅速减弱为10g/kg以下,850~300 hPa之间各层平均比湿为2g/kg。分析湿度垂直分布(图略)可以发现,850 hPa和500 hPa有湿度的大值区,两层以上分别有上干下湿的结构特征,对应在垂

直范围内有两个"喇叭口"状结构。

3 雷达回波特征

分析卫星云图(图略)资料可以发现,飑线影响过程中在关中西部和陕北南部有弱对流云团存在,云团主体较小、边界模糊,无法反应出飑线的发生、发展特征,因此,利用西安多普勒雷达探测资料分析这次飑线过程中尺度系统的演变。

3.1 反射率因子的演变

从雷达基本反射率演变可以看出,这次飑线 是以后续线型为主形成的(图3)。

初始阶段,21:57 西安多普勒雷达垂直反射率因子图所示,在50~200 km 范围内有大片对流云团生成,在主体云团前沿有三个较强回波中心存在,分别位于宝鸡凤翔、咸阳彬县及甘肃庆阳,如图中的 A、B、C 所示,A 和 C 的最大反射率因子超过60 dBz,B 单体反射率因子较弱为50 dBz,三者连线呈东北一西南走向。可见,在飑线形成初始阶段,在较小范围内有多个对流单体和对流回波群的活动。

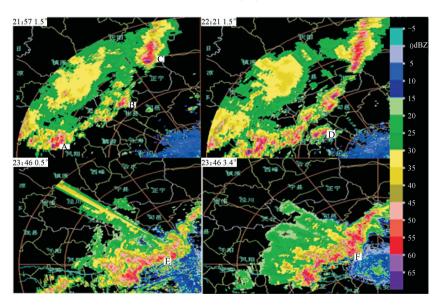


图 3 2013-07-31 不同时次不同仰角的反射率因子(距离每圈间隔 50 km)

发展成熟阶段,高空冷涡后部干冷空气与西南暖湿空气在陕西中部交汇,该地区出现持续的气流辐合,不断有新的对流单体生成,然后沿引导气流方向移动。22:21上述三个强回波云团合并呈线状排列的狭长对流回波带,在其前部咸阳永寿出现反射率因子超过55dBz的对流单体

D。随后,强对流云带向东南移动,云体结构密实,影响咸阳、西安等地。可见,飑线发展成熟阶段,对流回波活跃并快速移动,演变过程中有趋于带状分布和排列的特征。23:46,0.5°仰角反射率因子图,E处北侧有45~50 dBz 回波带,范围较小;3.4°仰角回波图上,F处北侧有大片

55~60 dBz 强回波带,且回波带范围较大。可见,此次飑线在成熟阶段具有低层弱回波区和中高空强回波区的悬垂回波结构。

减弱阶段(图略),飑线发展成熟后继续向东南方向移动,关中西部地区出现的对流单体相继合并,云体范围和强度均减小,飑线呈减弱趋势并向东南方向移动,影响渭南、商洛地区。

3.2 径向速度场特征

从西安多普勒雷达径向速度图(图略)可以 发现,7月31日22时,在宝鸡东北部与咸阳西北 部之间30~50 km 范围内出现一条风速辐合带, 辐合带上镶嵌多个小尺度辐合系统,辐合带向东 南方向移动过程中,大片负速度区内出现了正速 度区(如图4),并有零速度线环绕,表明此处风 向发生了剧烈的变化。产生了强的风切变,具有 明显的辐合辐散。8月1日00时、01时咸阳、蓝 田分别出现11.5 m/s、16.5 m/s的大风。

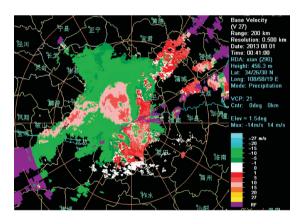


图4 2013-08-01T00: 41 (北京时) 西安多普勒雷达 径向速度 (距离每圈间隔 50 km)

3.3 垂直累积液态水含量 (VIL) 分析

垂直累积液态水含量是多普勒雷达的一个导出产品,是反映降水云体中,在某一确定的底面积的垂直柱体内液态水总量分布的图像产品。它是判断强降水、冰雹等灾害性天气的工具之一 $^{[6]}$ 。7月31日22:09,对流云回波出现在陕西关中地区,对流云带中VIL最大值为30~35kg/m²;随着飑线生成发展东移,VIL值逐渐增大,23:04时对流回波中最大 VIL值达到65kg/m²;而后 VIL值迅速减弱,23:16 对流回波中最大 VIL值减弱至50 kg/m² 后又快速跃增

至 70 kg/m^2 ; 8 月 1 日 00 时至 01 时,VIL 值又减弱到 $30 \sim 40 \text{ kg/m}^2$,并维持在较低的范围内强弱交替,与地面 11 站大风出现时间一致。由以上分析可以看出,回波强度存在强弱交替的现象,而 VIL 高值中心的强弱交替与影响区域大风的发生有很好的对应关系,VIL 由高到低的突然减弱,可以提前 1 h 预示该地区大风的出现。

4 小结

- (1) 本次强对流天气发生在深厚的高空冷涡的西南象限,对流层高层强冷空气与低层暖湿空气的上下配置、充分的水汽条件,为飑线的生成、发展储备了大量的不稳定能量。
- (2) 中尺度对流系统飑线以后续线型为主, 在低层辐合线上不断有新生对流单体发生、发 展、合并而形成较强的飑线天气过程。
- (3) 带状回波、强雷达反射率因子 (55 dBz 以上)、强的风速辐合带、垂直方向的悬垂回波结构等雷达回波特征,对此类强对流天气的发生有一定的预警作用。
- (4) 雷雨大风前的 VIL 高值中心(超过 50 kg/m²) 回波强度存在强弱交替的现象,由高到低突然减弱,对大风有较好的指示意义。

参考文献:

- [1] 张培昌,杜秉玉,戴铁丕.雷达气象学 [M]. 北京:气象出版社,2001:420-426.
- [2] 丁一汇,李鸿洲,章名立,等.我国飑线发生条件的研究[J].大气科学,1982(1):16-21.
- [3] 侯建忠,王繁强,方建刚,等.黄土高原一次冷 涡飑线的综合分析与数值模拟[J].高原气象, 2007(2):353-362.
- [4] 姬鸿丽,常红丽,陈红霞,等.一次飑线天气过程的综合分析[J].气象与环境科学,2009(2):41-45.
- [5] 刘子臣. 陕西中尺度系统及短时天气预报 [M]. 北京: 气象出版社, 1998: 54-108.
- [6] 俞小鼎,姚秀萍,熊廷南,等.多普勒天气雷达原理与业务应用[M].北京:气象出版社,2006:185-187.