苗运玲,张林梅,卓世新.哈密地区霜冻气候特征分析及其对农业的影响[J].陕西气象,2016(3):12-16. 文章编号,1006-4354(2016)03-0012-05

哈密地区霜冻气候特征分析及其对农业的影响

苗运玲1,张林梅2,卓世新1

(1. 哈密地区气象局,新疆哈密 839000; 2. 阿勒泰地区气象局,新疆阿勒泰 836500)

摘 要:利用 1961—2014 年哈密地区 4 个国家气象站逐日最低气温≤0 ℃的观测资料及低温冻害调查资料,根据霜冻指标计算历年初、终霜冻日期和无霜冻期变化趋势;依据异常霜冻标准,分析哈密地区霜冻异常特征,探讨其对农业生产的影响。结果表明:(1) 近 54 a 全区及各站点终霜冻绝对变率均大于初霜冻,表明终霜冻稳定性差,对农牧业生产危害大。(2) 全区及各站点初霜冻呈推迟趋势,终霜冻呈提前趋势,无霜冻期呈延长趋势。(3) 特晚终霜冻近 14 a 各地均未出现,而偏晚终霜冻在各年代几乎都有出现;特早初霜冻各地在 20 世纪 80—90 年代均未出现,偏早初霜冻在 60—90 年代各地均有出现。(4) 哈密地区霜冻灾害主要由终霜冻造成。

关键词:霜冻;气候特征;农业;影响;哈密

中图分类号: P4680.21 文献标识码: A

霜冻是指在春秋气温转换季节, 土壤表面和 植物表面温度下降到0℃或以下,足以使植物漕 受伤害甚至死亡的一种农业气象灾害[1]。霜冻在 世界范围内不仅广泛发生, 而且危害大、损失 重,在我国更是如此。近20年来,全球气候呈 不断变暖趋势,国内外部分专家就这种变暖趋势 对霜冻指标的影响进行了一定研究, 国外研究表 明:在北欧、美国等国家霜冻日数都有减少趋 势[2-3]。我国众多学者运用不同指标对霜冻的气 候特征及其变化规律进行了研究[4-9],叶殿秀[10] 等采用 577 个测站 1961—2007 年的资料分析了 我国霜冻变化特征,发现全国大部地区终霜冻日 期比初霜冻日期的年际间差异大, 无霜冻期又比 终霜冻日期的年际变化大。陈少勇[11]等分析了 中国西北地区初霜冻的气候变化特征,发现初霜 冻显著推迟,近49 a来平均推迟了9 d;1986年 出现突变,推迟日期更长。哈密地处亚欧大陆腹 地,新疆最东部,由于天山横贯新疆中部,使哈 密具有独特的地理环境和气候特征。春秋冷空气 活动频繁,冷暖变化剧烈,霜冻成为该地区危害

最严重的灾害性天气之一。在全球气候变暖的大背景下进行霜冻特征及其变化研究,不仅有助于提高当地霜冻的预报预测能力,而且对于农业结构调整和有效防御霜冻危害具有相当积极的意义。

1 资料与方法

1.1 资料

温度条件是农作物生长发育主要影响因子之一,利用最低气温 \leq 0 °C作为霜冻出现的判断标准。选取哈密地区具有代表性的 4 个国家气象站(哈密市、巴里坤、伊吾、淖毛湖)1961—2014 年近 54 a 逐日最低温度 \leq 0 °C的资料及历年低温冻害调查资料。其中哈密市、淖毛湖代表山南农业区(简称山南),巴里坤、伊吾代表山北牧区(简称山北)。规定:以日最低温度 \leq 0 °C的日期作为霜冻指标,将夏末或秋季日最低气温 \leq 0 °C的第一日定义为初霜冻日,春季或夏初日最低温度 \leq 0 °C的最后一天定义为终霜冻日,终霜冻日的翌日到初霜冻日的前一日为无霜期。

收稿日期: 2015-08-25

作者简介: 苗运玲(1976—),女,汉族,新疆哈密人,学士,工程师,从事短期天气预报。

基金项目:新疆吐鲁番哈密地区空中云水资源开发利用项目子课题 (TUHA201508)

1.2 方法

(1) 利用线性回归、Mann-Kendall 突变检验方法等对哈密地区近 54 a 霜冻气候特征进行分析和研究。(2) 根据异常霜冻定义标准[12], x $-\mu \le -1.65\sigma$ 和 $-1.65\sigma < x - \mu \le -\sigma$ 分别为特早初霜冻和偏早初霜冻; $x - \mu \ge 1.65\sigma$ 和 1.65σ $> x - \mu \ge \sigma$ 分别为特晚终霜冻和偏晚终霜冻。x 为霜冻指标, μ 为历年霜冻的平均值, σ 表示标准差。

2 结果与分析

2.1 霜冻的空间分布特征

对哈密地区及 4 个站 1961—2014 年霜冻进行统计 (表 1)。全区平均初霜冻日为 9 月 30 日,最早平均出现在 9 月 10 日,最晚在 10 月 21 日,各地最早、最晚初霜冻日之间极差为 31~48 d;山南平均初霜冻日为 10 月 15 日,山北为 9 月 16 日;单站最早出现在巴里坤 (8 月 26 日),最晚出现在淖毛湖 (11 月 4 日)。全区平均终霜冻日是 4 月 26 日,平均最早出现在 3 月 30 日,最晚在 5 月 23 日,各地最早、最晚终霜冻日之间极差为 46~66 d;山南平均出现在 4 月 11 日,山北为 5 月 11 日;单站最早出现在淖毛湖 (3 月 17 日),最晚出现在巴里坤 (6 月 19 日)。全地区平均无霜冻期为 157 d,最短无霜冻

期为 118 d,最长为 188 d;单站无霜冻期最短出现在 巴里坤(82 d),最长出现在淖毛湖(220 d);各地最短、最长无霜冻期之间的极差为 $63\sim78 d$ 。

通过计算绝对变率发现哈密地区及各站点的 终霜冻绝对变率均大于初霜冻,表明终霜冻年际 差异较初霜冻大,稳定性差,对农牧业生产的危 害大于初霜冻。而无霜冻期极差和绝对变率不仅 大于初霜冻日,也大于终霜冻日,表明无霜冻期 不仅受初霜冻异常影响,也受终霜冻异常影响。 经过对比发现巴里坤初、终霜冻及无霜期的极差 和绝对变率最大,说明该地的热量资源最不稳 定,可利用率也相对较低。

从选取资料的区域来看,各地的纬度均在42°49′~43°46′之间,相差不大,但各地海拔高度却相差较大,淖毛湖最低(479.1 m),其终霜冻结束最早,初霜冻出现最晚,无霜冻期最长;巴里坤海拔高度较高(1674.7 m),其初霜冻出现最早,终霜冻结束最晚,无霜冻期最短。可见初霜冻随海拔高度增高而提前,终霜冻随海拔高度降低而提前,反之推迟,因此海拔高度是影响哈密地区霜冻变化的重要因素,它造成霜冻空间分布十分不均匀,初(终)霜冻日及无霜冻期差异较大。

									工 彦 世 / 1			
	终霜冻日(月-日)				初霜冻日(月-日)				无霜期/d			
站点	最早	最晚	平均	绝对 变率	最早	最晚	平均	绝对 变率	最短	最长	平均	绝对 变率
哈密	03-21	05-06	04-13	8.37	09-29	10-30	10-15	6.82	154	217	184	9.52
巴里坤	04-14	06-19	05-16	9.81	08-16	10-02	09-12	9.26	82	160	118	15.48
伊吾	04-06	06-01	05-06	9.41	08-31	10-18	09-20	8.48	106	176	136	13.55
淖毛湖	03-17	05-07	04-09	9.18	09-27	11-04	10-15	8.44	149	220	188	12.62
全地区	03-30	05-23	04-26	6.08	09-10	10-21	09-30	5.77	123	193	157	8.69

表 1 哈密地区初、终霜冻日和无霜期的气候特征

注: 绝对变率 $V = \frac{1}{n} \sum_{i=1}^{n} |x_i - \overline{x}|$ (n 为样本数, \overline{x} 为平均值), 单位为 d。

2.2 霜冻的年际变化趋势

从哈密地区近54 a 初(终)霜冻日和无霜冻期年际变化曲线图(图1)可知,全区初霜冻

日呈推迟趋势,气候变化倾向率为-2.0 d/10 a; 单站(图略)巴里坤和淖毛湖推迟最明显,倾向 率均为-3.6 d/10 a,通过 0.01 的信度检验;伊 吾则呈微弱的提前趋势,没有通过显著性检验。全区终霜冻日呈提前趋势,气候变化倾向率为2.0 d/10 a; 单站巴里坤提前最明显,倾向率为3.7 d/10 a,通过0.01 的信度检验;哈密市提前趋势最弱,没有通过显著性检验。哈密地区无霜冻期呈延长趋势,气候变化倾向率为4.0 d/10 a,单站巴里坤延长最明显,倾向率为7.4 d/10 a,全区及各站点均通过0.01 的信度检验。无霜冻期的延长为农业生产提供了有利条件,热量资源充足、稳定,作物生长期积温增多,同时对扩大晚熟品种种植面积、提高农产品的产量和品质十分有利。

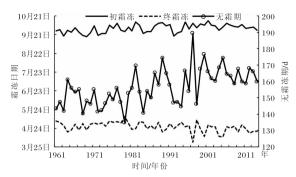


图 1 哈密地区 1961—2014 年初 (终) 霜冻日 及无霜冻日年际变化曲线

2.3 突变特征

利用 Mann-Kendall 方法计算哈密地区全区 初(终)霜冻日和无霜冻期气候突变时间。由图 2a 可见, $U_{\rm F}$ 曲线自 20 世纪 70 年代中期有明显 的上升趋势。80年代末期至2014年这种上升趋 势均大大超过显著性水平 0.05 的临界线 (± 1.96), 甚至超过 0.001 显著性水平 (±2.56), 表明哈密地区初霜冻日呈显著推迟趋势,由 $U_{\rm F}$ 和 U_B 曲线交点的位置可以确定 1975 年是全区初 霜冻日从相对偏早期跃变为相对偏晚期的突变 年。由图 2 b 可知, $U_{\rm F}$ 曲线自 20 世纪 80 年代中 期有明显的下降趋势, U_F和 U_B在 2002 年出现 交点,并且 U_{F} 超过临界值-1.96,表明终霜冻 日呈显著的提前趋势,2002年全地区终霜冻日 从相对偏晚期转变为相对偏早期。全区无霜冻期 (图 2c) $U_{\rm F}$ 和 $U_{\rm B}$ 曲线在 1985 年出现交点,上升 趋势明显,不仅通过 0.05 的置信度检验,也同

样通过 0.001 的置信度检验,表明无霜冻期呈显著的延长趋势,因此 1986 年是全地区无霜期从相对偏短期转为相对偏长期的突变年。

对哈密各站点近 54 a 初 (终) 霜冻日和无霜冻期时间序列也进行突变分析 (图略) 发现,哈密市、伊吾近 54 a 初、终霜日和无霜期均不存在气候突变;淖毛湖初霜日和无霜冻期发生气候突变,突变年分别为 1975 年和 1980 年;巴里坤初、终霜冻和无霜冻期均发生气候突变,突变年分别为 1985 年、1996 年和 1987 年,并且突变显著。

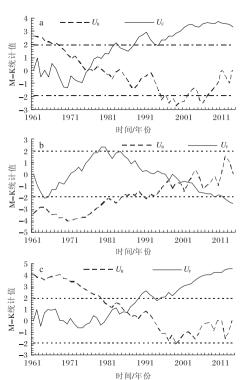


图 2 哈密地区 1961—2014 年初霜冻日 (a)、 终霜冻日 (b) 及无霜期 (c) M-K 检验 (虚线为 α=0.05 临界值)

3 异常霜冻特征

根据哈密地区近54 a 特晚、偏晚终霜冻和特早、偏早初霜冻出现日期及所占比例(表2)分析,各站点特晚终霜冻出现频率为1.9%~5.6%,巴里坤、伊吾和淖毛湖主要出现在20世纪60年代和70年代,哈密市出现在70年代和90年代,近14 a 各站点均没有出现特晚终霜冻,山南主要出现在5月上旬和中旬,山北主要出现在6月上旬和中旬。各站点偏晚终霜冻出现频率为14.8%~20.4%,哈密市和淖毛湖各年代都

有出现,巴里坤 90 年代未出现,伊吾 60 年代未出现,山南主要出现在 4 月下旬,山北主要出现在 5 月下旬。

各站点特早初霜冻出现频率为 1.9% ~ 11.1%, 伊吾和淖毛湖主要出现在 20 世纪 60 年代, 巴里坤主要出现在 60 年代和 70 年代, 哈密

市主要出现在 60 年代和 21 世纪初十年,山南主要出现在 9 月下旬,山北主要出现在 8 月下旬。偏早初霜冻出现频率为 14.8%~25.9%,哈密市和伊吾各年代都有出现,巴里坤和淖毛湖在近14 a 均未出现偏早初霜冻,山南主要出现在 10 月上旬,山北主要出现在 9 月上旬。

表 2 近 54 a 哈密地区各站点异常霜冻出现年份和出现频率(括号内)

%

		终霜冻	初霜冻				
站 名	特晚	偏晚	- <u>- </u>	偏早			
哈密市	1979、 1991(3.7)	1963, 1968, 1977, 1983, 1984, 1986, 1995, 1998, 2001, 2008, 2014 (20.4)	1969、2004(3.7)	1961、1962、1968、1970、 1973、1974、1981、1984、 1992、1993、2007(20.4)			
巴里坤	1961, 1971, 1980 (5.6)	1966、1972、1974、1975、 1978、1979、1981、1988、 2009(16.7)	1965, 1969, 1972, 1973, 1978, 1984, (11.1)	1963、1967、1970、1976、 1979、1981、1986、 1996(14.8)			
伊 吾	1961 (1.9)	1970、1976、1979、1993、 1994、1995、1998、 2007(14.8)	1963 (1.9)	1968、1972、1974、1979、 1980、1985、1986、1992、 1993、1994、2006、2009、 2011、2012(25.9)			
淖毛 湖	1962 (1.9)	1963, 1968, 1975, 1976, 1977, 1983, 1984, 1986, 1998, 2003, 2008 (20.4)	1967、1968(3.7)	1961, 1962, 1963, 1964, 1969, 1970, 1972, 1973, 1974, 1978, 1981, 1992 (22.2)			

4 霜冻对农业生产的影响

气候变暖必然会影响初、终霜冻和无霜期变化,但并不意味着霜冻发生概率下降,危害减弱。虽然近年来全国寒潮发生次数减少,无霜期延长,初霜冻和终霜冻发生范围有缩小趋势,但是终霜冻发生次数却趋于频繁^[13]。根据哈密地区霜冻灾害历史资料统计,终霜冻灾害共发生10次(表略),均出现在20世纪80年代以后,而近14a出现了7次,占70%;初霜冻灾害出现2次,均出现在21世纪的近14a。

终霜冻是春夏转换季节发生的气象灾害,对春播作物苗期、果树花期等影响很大,终霜冻出现的越晚,对作物危害也就越大。哈密地区主要农作物有小麦、棉花、哈密瓜、葡萄、大枣等。4月上中旬,山南农业区大部分农作物尚未播种

出苗,只有小麦处于生长期,此时出现的霜冻一般不会造成较大危害。但是霜冻出现在 4 月下旬或 5 月上、中旬,由于棉花、哈密瓜、葡萄、果树等作物处于幼苗生长期和果树开花期,抗冻能力较弱,易造成严重冻害。如 2014 年 4 月 23—24 日,哈密地区出现了大风、降温、降雪强寒潮天气过程,最低气温哈密南部降至—2.8 $^{\circ}$ 0,北部降至—11.3 $^{\circ}$ 0,造成农业、林果业、畜牧业受灾十分严重,造成林果业受灾 27.89 万 $^{\circ}$ 1 农业受灾 0.25 万 $^{\circ}$ 1 导致受冻死亡的牲畜 1 470头(只),经济损失达 31 918.1 万元。

初霜冻主要出现在秋冬转换季节,出现越早,危害越重,初霜冻过早出现会对小麦、棉花、马铃薯等生长和成熟造成严重影响,尤其是9月出现霜冻对农作物影响最大。如2004年9

月 22—24 日哈密地区出现降温、降水天气,最低气温降至—2.8 \mathbb{C} ,导致未收割的 0.45 万 hm^2 农作物受灾,直接经济损失达 1 500 万元。

可见,霜冻危害是普遍的,无论是过去、现在、还是将来,它对农业生产和社会经济的影响都是十分严重的,因此,加深对霜冻的研究、预测和防御是一项十分重要的工作。

5 结论

- (1)哈密地区及各站点终霜冻绝对变率为6.08~9.81,初霜冻为5.77~9.26,无霜期为8.69~15.48,终霜冻绝对变率比初霜冻大,稳定性较差,表明终霜冻对农牧业生产造成的危害大于初霜冻,无霜期受初霜冻、终霜冻异常影响,绝对变率不仅大于初霜冻,也大于终霜冻。
- (2) 近 54 a 哈密全区初霜冻日呈推迟趋势,气候变化倾向率为一2.0 d/10 a, 单站巴里坤和淖毛湖推迟最明显,倾向率均为 3.6 d/10 a; 全区终霜冻日呈提前趋势,气候变化倾向率为 2.0 d/10 a, 单站巴里坤提前最明显,倾向率为 3.7 d/10 a; 全区无霜冻期呈延长趋势,气候变化倾向率为 4.0 d/10 a, 单站巴里坤延长最明显,倾向率为 7.4 d/10 a。
- (3)哈密地区初霜冻日突变年出现在 1975年,呈显著推迟趋势;终霜冻日突变年为 2002年,呈显著提前趋势;无霜冻日突变年出现在 1986年,呈显著的延长趋势。
- (4)哈密地区各地特晚终霜冻出现频率为 1.9%~5.6%,近 14 a 各地均未出现特晚终霜冻;特早初霜冻出现频率为 1.9%~11.1%,其中伊吾特早初霜冻仅出现了 1 次,而巴里坤特早初霜冻出现了 11 次。各地偏晚终霜冻出现频率为 14.8%~20.4%,偏早初霜冻出现频率为 14.8%~25.9%。巴里坤和淖毛湖异常初霜冻都出现在 2000 年以前,近 14 a 没有出现异常初霜冻都霜冻。
- (5) 哈密地区霜冻灾害主要是由终霜冻造成的,终霜冻灾害共发生10次,均出现在20世纪

80 年代以后,近 14 a 出现了 7 次,占总数 70%。

参考文献:

- [1] 冯玉香,何维勋.霜冻的研究[M].北京:气象出版社,1996.
- [2] Heino R. Progress in the study of climate extremes in northern and central Europe [J]. Climatic Change, 1999, 42 (1): 151-181.
- [3] Bonsal BR, Zhang X, Vincent LA, et al. Characteristics of daily and exteme temperature over Canada [J]. J Climate, 2001, 14 (9): 1959-1971.
- [4] 韩荣青,李维京,艾婉秀,等.中国北方初霜冻日期变化及其对农业的影响[J].地理学报,2010,65(5):525-532.
- [5] 郑玉萍,宫恒瑞,曹兴,等.近53 a 乌鲁木齐农 区霜冻变化特征 [J].沙漠与绿洲气象,2015,9 (1):52-57.
- [6] 张霞,钱锦霞,气候变暖背景下太原市霜冻发生特征及其对农业的影响[J],中国农业气象,2010,31(1):111-114.
- [7] 唐晶,张文煜,赵光平,等.宁夏近 44 a 霜冻的 气候变化特征 [J].干旱气象,2007,25 (3): 39-43.
- [8] 刘红霞,黄玲,曹红丽,等.1961—2010年乌苏市霜冻气候特征分析[J].陕西气象,2013(6):15-18.
- [9] 何可杰,杨婷婷,雷雯.宝鸡市霜冻气候特征分析[J].陕西气象,2015 (4): 17-20.
- [10] 叶殿秀,张勇.1961—2007年我国霜冻变化特征 [J]. 应用气象学报,2008,19(6):661-665.
- [11] 陈少勇,郑延祥,楼望萍,等.中国西北地区初霜冻的气候变化特征[J].资源科学,2013,35 (1):165-172.
- [12] 陈乾金,夏洪星,张永山.我国江淮流域近 40 年异常初终霜冻的分析 [J].应用气象学报, 1995,6 (1):50-55.
- [13] 马树庆,李峰,王琪,等.寒潮和霜冻 [M]. 北京:气象出版社,2009.