贾晨刚,乔青,王玮,等. 基于"天镜一陕西"的业务系统数字化监控设计[J]. 陕西气象,2025(1):71-76. 文章编号:1006-4354(2025)01-0071-06

基于"天镜-陕西"的业务系统数字化监控设计

贾晨刚1,2,乔青1,王玮1

(1. 陕西省气象信息中心,西安 710014;

2. 中国气象局秦岭和黄土高原生态环境气象重点实验室,西安 710014)

摘 要:为加强陕西气象业务系统的精细化管理,做好"云原生"与"云化改造"业务系统的资源使用、系统运行、数据服务等数字化监控与分析评估,设计基于"天镜一陕西"的全省气象站点信息、台站级网络拓扑、机房动力环境、高性能计算机系统、CMACast下行资料、资料共享服务、秦智系统、数据共享网系统、预警信息发布平台等的运行监控界面,提高气象业务集约化运行质量与数据分析评估效率。实际运行结果表明,具有本地化特色的"全业务、全流程、全要素"综合实时监控系统能够满足观测、预报、服务等业务实时监控需求。

关键词:信息化;云十端;云原生;云化改造;监控设计

中图分类号:TP309

文献标识码:A

近年来,随着气象服务领域的不断扩展,也出现了更多的气象业务系统。当系统出现故障时,运维人员要从采集、传输、处理、共享、应用等多个环节查找原因,人工逐一检查多个系统的运行状况,时常出现耗时长、效率低、故障定位不准的情况,严重制约业务系统运维响应速度和执行效率^[1-6]。2020年省级气象综合业务监控系统("天镜一陕西")的部署,实现了国、省统一部署的业务系统的综合监视、业务集中告警以及与运维流程的联动管理。截止目前陕西本地业务系统运行状态的综合监视、业务集中告警还很欠缺,建设具有本地化特色的"全业务、全流程、全要素"综合实时监控系统势在必行^[7]。

1 总体设计

基于"天镜-陕西",设计开发全省气象站点信息、全省台站级网络拓扑、数据共享网系统、高性能计算机集群系统、机房场地动力环境、秦智系统、CMACast下行资料、资料共享服务、预警信息发布平台等9个运行监控界面,以服务于观测、预

报、服务三大类业务进行监控系统的模块设计。同时,按照"纵向到底、横向到边"的原则,针对相关业务系统进行"全业务、全流程、全要素"综合实时监控,全局管控和实时感知各类气象数据、各应用节点运行状态,形成业务监控大数据,保障业务系统稳定运行,实现集约化监视。系统模块框图如图1所示。

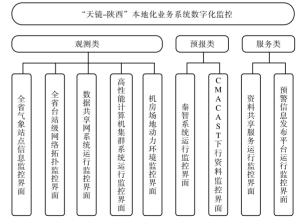


图 1 数字化监控系统模块框图

收稿日期:2024-01-23

作者简介: 贾晨刚(1982—), 男, 汉族, 陕西户县人, 硕士, 高工, 主要从事气象信息系统运维与技术研发工作。

基金项目:秦岭和黄土高原生态环境气象重点实验室开放基金课题(2022G-18)

1.1 观测类业务系统监控内容设计

(1)实时采集分析九类观测数据传输状态信息,设计实时监视统一数据流程。九类观测数据包括99个国家基本站地面数据、1504个区域自动站地面数据、7部多普勒雷达数据、6个公路交通气象数据、64个自动土壤水分数据、6个大气成分数据、4个高空探测数据、2个GNSS/MET水

汽数据、15个酸雨数据。

- (2)实时采集分析省-市-县三级网络链路状态信息,展示全省99个观测站点的网络拓扑结构和网络链路状态。
- (3)实时收集数据共享网系统的运行状态数据,设计并展示全数据流程监控界面。具体信息见表 1。

子类型	监控信息描述	
	CPU 使用率	
基础资源	内存使用率	
	磁盘使用率	
核心进程状态	异常进程名称和数量	
访问次数	系统中数据和服务产品的访问次数统计	
访问数据量	系统中查询数据的总量统计	
中间件	RabbitMQ 的消息处理监控	
状态	每秒检查点页数	
	每秒批准请求数	
	每秒编译 SQL 数	
	等待锁数量	
	阻塞进程数	
	缓冲命中率	
连接数 实时显示数据库连接数		
 表空间	管理表、数据表等占用空间情况	
	基础资源 核心进程状态 访问次数 访问数据量 中间件	

表 1 数据共享网运行状态信息表

- (4)实时收集高性能计算机集群系统的运行 状态数据,设计并展示系统实时运行监控界面。 包括 2 个登录节点、2 个管理节点、20 个计算节 点、4 个前后处理节点的服务器状态以及 CPU、 内存、计算磁盘、网卡、文件存储系统利用率。
- (5)实时收集核心数据机房场地动力环境的运行状态数据,设计并展示系统实时运行监控界面。包括机房动力环境温湿度实时监控信息、实时视频信号、报警详情等。

1.2 预报类业务系统监控内容设计

(1)实时收集"秦智"陕西智能网格预报业务系统的运行状态、数据流转等信息,设计并展示系统实时运行监控界面。包括系统基础资源的CPU/内存/磁盘使用率、系统内部网络拓扑监视、原始资料采集信息监视、关键产品生成和11个地市要素订正产品上传情况监控。具体监控数据汇总信息见表2。

(2)实时收集卫星广播(CMACast)系统的运行 状态数据,设计并展示系统实时运行监控界面。包 括 CMAcast 运行状态信息、小站接收状态、信噪比、 完整接收文件数量和大小、资料推送情况等。

1.3 服务类业务系统监控内容设计

(1)实时收集气象资料在本部门内和行业用户间共享的数据量、用户在线状态、FTP连接和资料使用情况的监视统一数据流程。通过多维度的数据统计直观展示数据共享服务情况,包括访问次数和数据下载量排名、资料种类单日下载量排名等。具体共享资料包括:4种地面资料、26种高空资料、8种海洋资料、4种辐射资料、81种农气资料和81种数值预报产品、20种大气成分资料、12种气象灾害数据、42种雷达数据、51种卫星数据、1种科考数据、3种气象服务产品以及41种其他数据,均由陕西气象大数据云平台和省级文件共享服务器提供。

监控类型	子类型	监控信息描述
		CPU 使用率
基础运行环境	基础资源	内存使用率
		磁盘使用率
	内部网络	实时显示服务器间网络连通情况
原始资料采集		指秦智系统业务需求接入的原始资料种类,包括 NCI
	资料种类	RJTD 细网格、GPAPES_MESO、GPAPES_3KM、C
		PAS_1KM、CLDAS_1KM、格点指导预报等
	应收/实收/缺收	根据国家局下发各类原始资料节目表以及省级资料实
		接收情况,展示每种资料的实时收集情况
关键产品生成	DCOEF 背景场	包括 Rain24、Other、NTmaxmin、Tmaxmin 等
	Release 发布产品	包括 Rain6、rh2m、seap、stap 等
	中央台指导产品	包括中央台 Rain24、rh2m、t2m、tcc 等
产品上传情况	省台背景场	
	省台格点报上传国家局	包括降水、气温、高温、低温、风等要素
	省台城镇报上传国家局	
	地市订正产品上传省局	包括降水、气温、高温、低温、风等要素订正产品

表 2 "秦智"监控数据汇总表

(2)实时收集陕西省预警信息发布平台的运行 状态数据,设计并展示系统实时运行监控界面。包 括基础资源的 CPU/内存/磁盘使用率、分级预警 累计发布次数、发布手段监控、受众用户数量等。

2 技术路线

业务系统运行中产生的日志信息 DI(Date Information)和告警信息 EI(Error Information)按照"天镜-陕西"数据接口定义规范生成并发送至"天镜-陕西"。

2.1 DI 发送流程

业务系统发送的 DI 可自行定义相关内容, Type 分为两类,命名规则分为四段。

数据类:格式定义为 BEXA. SYSTEM. DA-

TA. XX.

服务类:格式定义为 BEXA. SYSTEM. SERVICE. XX。

其中,BEXA 代表陕西省级代码定义;SYS-TEM 代表业务系统名称,可以按照实际业务系统名称进行定义;DATA/SERVICE 为固定字段,根据数据类型区分使用;XX 代表数据类型子类,子类分类名称可自行定义。

以秦智-陕西智能网格气象预报系统(SIG-MA)的数字化监控数据流程为例,表3为已定义的 Type 信息表。

为方便简要说明 DI 接入流程,表 4 为秦智系统设计的 DI 测试接口参数表结构。

表 3 秦智系统 DI Type 定义表	表 3	秦智	系统	DI	Type	定义表
----------------------	-----	----	----	----	------	-----

DI 类型	Type 名称	Type 说明
	BEXA. SIGMA. DATA. DATAFLOW	数据处理流程详细信息
数据类	BEXA. SIGMA. DATA. DATAPROD	产品加工处理流程详细信息
	BEXA. SIGMA. DATA. TASK	任务运行详细信息
	BEXA. SIGMA. DATA. PRODUCT	产品生成信息
服务类	BEXA. SIGMA. SERVICE. WEBSITE	网站数据服务指标信息
	BEXA. SIGMA. SERVICE. HEALTH	服务健康状态信息
	BEXA. SIGMA. SERVICE. USER	用户访问行为详细信息

参数字段	描述	参数类型	参数说明
Type 日志类型标识 S	String	按照秦智系统 DI Type 定义表进行定义,并将其配置到 Kafka 的白	
	String	名单中	
Occur_time 采样时间 1	Ĭ4	采样时间,采用时间戳形式(毫秒级)。时间戳定义为从格林威治时	
	Int	间 1970 年 01 月 01 日 00 时 00 分 00 秒起至现在的总毫秒数	
Name	日志名称	String	日志信息的名称
DATA_TYPE	数据编码	String	业务系统自定义:参照气象资料四级编码编写
SEND	发送目的地	String	业务系统自定义:数据/产品分发目的地
IIiii	台站号	String	业务系统自定义:参照陕西省气象观测站区站号编写

表 4 秦智系统 DI 测试接口参数表结构

定义好 Type 信息表和测试接口参数表结构后,根据秦智系统 DI 接口参数生成相应的 DI 并发送,完成一个 DI 接入。DI 测试用例代码示例(编程语言为 Python):

defcreate_body(Type, Occur_time, Name,
DATA_TYPE, SEND, IIiii);

data = {"Type": "BEXA. SIGMA. DATA.
DATAFLOW".

"occur_time": int(time. time() * 1000),

"Name": "秦智系统数据实时处理详细信息",

"DATA _ TYPE": "A. 0001. 0044. R001",

// 以地面小时观测资料为例

"SEND": "FIDB", // 以天擎 中用户自建数据库 FIDB 为例

中用尸目建数据件 FIDB 为例 — "IIiii": "57131", // 以 57131

泾河站为例

}

return data defcall api(data):

url = 'http://X. X. X. X:7508/store/openapi/v2/datainfo/push? apikey=XXXX'

// X. X. X. X 为"天镜一陕西"DI 接口服务 IP, XXXX 为"天镜一陕西"为接入的业务系统自动生成的唯一标识符(apikey)

headers = {'Content-Type': 'application/
json'}

req = urllib2. Request (url, json. dumps
(data), headers)

response = urllib2.urlopen(req)
print("API 调用成功")
print(response.read())

2.2 EI 发送流程

业务系统发送的 EI 发送流程和 DI 大致相同,但 EI 的 Type 命名规则固定,均为 SYS-TEM. AL ARM. EI,SYSTEM 代表业务系统名称,可以按照实际业务系统名称进行定义。如秦智系统的 EI Type 就是 SIGMA. ALARM. EI。

下面设计秦智系统 EI 接口参数,表 5 为秦智系统 EI 测试设计的测试接口参数表结构。

表 5 秦智系统 EI 测试接口参数表结构

参数字段	描述	参数类型	参数说明
Severity	告警级别	String	告警级别:Critical 3,Error 2,Warning 1,OK 0
Occur_time	发生时间	Int	告警发生时间,采用时间戳形式(毫秒级)。定义同 DI
Name	告警名称	String	告警信息的名称
Description	告警描述	String	告警信息的具体内容
Entity_Name	告警源	String	产生告警信息的具体源
Entity_Addr	告警源地址	String	产生告警信息的具体源 IP 地址
Туре	告警类型	String	告警类型分为 Event 事件告警、Metric 指标告警

定义好测试接口参数表结构后,根据秦智系统 EI 接口参数生成相应的 EI 并发送,完成一个 EI 接入。下面是秦智服务器(10.2.1.2)内存使用率超过80%而产生的一条指标告警 EI 代码示例(编程语言为 Python):

curl -X POST -H 'Content-Type: application/json; charset=utf-8' -i --data'{

"Severity": 3

"Name": "system. mem. pct

_usage-内存使用率",

"description": "内存使用率超过80%",

"occur_time": int(time.time()

* 1000),

"entity_name": "SIGMA Server",

"entity_addr": "10.2.1.2",

"type": "metric",

} http:// X. X. X. X: 7508/alert/openapi/
v2/create? apikey=XXXX&app_key=YYYY

// X. X. X. X 为 DI 接口服务 IP, XXXX 为 接 人 的 业 务 系 统 自 动 生 成 的 唯 一 标 识 符 (apikey), YYYY 为告警平台自动生成的 API 接口验证序号(app_key)。

2.3 "天镜-陕西"内部处理流程

"天镜-陕西"接收到业务系统发送过来的 DI 和 EI,系统中消息中间件 Kafka 对 DI 和 EI 消息进行白名单过滤,数据中台 DataBank 预先创建好的主题分析模型接收对应的 Topic 日志消息和

告警消息,实现 DI和 EI的加工、人库、查询和对外服务等功能。"天镜-陕西"DI对外服务接口除了全量接口外,还可以通过 sql 脚本自定义接口实现个性化服务;EI通过集中告警平台 Alert 进行告警消息展示和对外服务,对外服务通过WebHook 技术实现。

秦智系统 DI 和 EI 测试数据具体流程见图 2。

3 界面设计

3.1 数据采集

数据采集技术框架选用 Flume。Flume 是一种流式日志采集工具,对每类传输数据进行简单处理并且传给相应接收方^[12]。Flume 主要有三个核心组件:Source(源)、Channel(通道)和 Sink (接收器)。工作流程为:(1)数据源将数据发送给Source 组件;(2)Source 组件将数据写入 Channel 组件;(3)Sink 组件从 Channel 组件读取数据,并将数据传输到目的地。

3.2 数据处理

数据处理采用微服务框架,将不同监控数据使用不同的微服务进行处理,用一组微服务构建一个应用。服务独立运行在不同的进程中,服务代码更容易更新,可以直接添加新特性或功能,不必更新整个应用[13]。

3.3 前端页面设计

前端页面采用 Vue. js 技术框架,配合使用 JavaScript 来实现的开源可视化库 Echars 以及底 层依赖矢量图形库 ZRender,提供标准化、易开发 的 API 接口,提供直观、交互丰富、可高度个性化

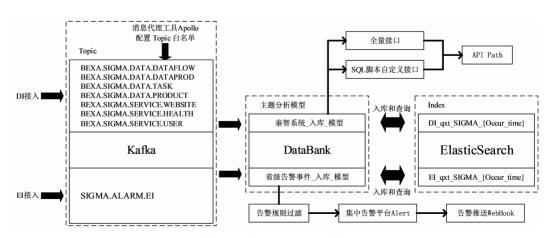


图 2 "秦智"系统 DI 和 EI 测试数据流程图

4 结语

76

通过"天镜-陕西"设计的 9 个数字化监控界面,实现陕西本地业务系统运行状态的综合监视、业务集中告警等功能。当某一系统运行出现故障时,运维人员能直观、准确地定位故障点,及时处理故障并恢复业务,缩短故障处理时间,提高业务系统运维响应速度和执行效率,真正地实现"全业务、全流程、全要素"综合实时监控。

参考文献:

- [1] 孙超,肖文名,陈永涛,等.气象综合业务实时监控 系统的设计[J].气象科技进展,2018,8(1):153-157.
- [2] 张晓,陈文琴.基于天镜的自动化运维应用研究 [J].信息系统工程,2021,20(6):140-143.
- [3] 刘媛. 大数据时代自动化运维管理的实践和思考 [J]. 网络安全技术与应用,2018(6):55-56.
- [4] 杨立苑,胡佳军,邓卫华,等.省级区域站数据直传 监控系统设计与实现[J].气象科技,2019,47(5): 773-779.
- [5] 李新庆,陈海波,杨有林,等.宁夏综合气象信息共享与管理系统设计研究[J].计算机技术与发展,2019,29(5);135-141.
- [6] 王笑,魏夏潞,韩宸望.基于"天镜"系统在实时业务监视中的应用研究[J].科技经济市场,2022(4):28-30.

- [7] 张彩云.基于微信企业号的天镜·内蒙古移动端研究与实现[J].内蒙古科技与经济,2022(4):77-79.
- [8] 张雅旎,胡永亮,张云飚,等.依托天镜本地化,构建全省气象业务监控一张网[J].浙江气象,2021,42(4):33-37.
- [9] 冯冼,李熠. 湖南省气象综合业务实时监控平台设计与实现[J]. 湖北农业科学,2022,61(11):139-144.
- [10] 袁雅涵,冯勇,安浩然.山东省气象综合业务实时 监控系统本地化建设研究[J].信息技术与信息 化,2022(7):66-69.
- [11] 冯勇,李微,朱辉,等.云计算环境下山东省气象 大数据云平台的设计与实现[J].信息技术与信息 化,2021(5):147-150.
- [12] 陈浩,张亚,罗希昌,等.基于 MongoDB 的气象数 据存储检索系统[J]. 计算机与现代化,2020(8): 100-104.
- [13] 张嘉男.青海省气象综合业务实时监控系统 ElasticSearch 数据库分析[J].长江信息通信,2021,34 (2):155-157.
- [14] 付杰,高鹏,孔小怡,等.气象预报业务系统综合监控展示大屏的设计与实现[J].基础设施与数据管理,2022(4):70-73.
- [15] 汪璠,张冰松,许玮. 气象综合业务实时监控系统 本地化开发初探[J]. 通信与信息技术,2020,243 (1):39-40.