李云溪,陈木兰,高芮,等. 咸阳樱桃主要气象灾害风险区划[J]. 陕西气象,2025(4):52-58. 文章编号:1006-4354(2025)04-0052-07

咸阳樱桃主要气象灾害风险区划

李云溪^{1,2},陈木兰^{2,3},高 芮^{2,4},万田荷^{1,2},李思梦^{1,2}
(1. 礼泉县气象局,陕西礼泉 713200;

- 2. 中国气象局秦岭和黄土高原生态环境气象重点开放实验室,西安 710016;
- 3. 彬州市气象局,陕西彬州 713500;4. 旬邑县气象局,陕西旬邑 711300)

摘 要:利用咸阳市12个国家气象站1991—2022年气象观测数据及2011—2021年樱桃产量数据,运用二次指数平滑法、层次分析法、熵权法、组合赋权法、加权求和法等方法获取樱桃主要气象灾害危险性指数,并利用GIS技术进行了樱桃主要气象灾害风险区划。结果表明:(1)咸阳樱桃主要气象灾害包含低温冻害、花期冻害与阴雨灾害。旬邑低温冻害危险性指数最高,乾县、武功、三原并列最低;旬邑花期冻害危险性指数最高,三原最低;永寿阴雨灾害危险性指数最高,礼泉最低。(2)低温冻害高风险区占咸阳市总面积的8.1%,主要分布在东北部土石山区;中风险区占咸阳总面积的22.8%,以黄土塬区、黄土高原梁状丘陵沟壑区为主。花期冻害高、中风险区分别占咸阳市总面积的19.4%、32.6%,高风险区主要为北部山地、黄土高原塬梁沟壑区,中风险区主要为黄土塬区以及黄土残塬区。阴雨灾害高、中风险区分别占咸阳市总面积的34.4%、28.7%,高风险区为北部山地及黄土塬区,中风险区主要为黄土高原沟谷地及黄土倾斜台状地。通过检验,咸阳樱桃主要气象灾害风险区划与实际种植情况基本符合,该结果可为咸阳樱桃灾害防御与产业布局优化提供参考。

关键词:咸阳樱桃;低温冻害;花期冻害;阴雨灾害;风险区划

中图分类号:S166

文献标识码:A

咸阳市位于陕西省关中平原中部,地势北高南低,地处暖温带,属大陆性季风气候,自然资源有利于果业发展。大樱桃又称甜樱桃,传入中国有150余年历史。21世纪初咸阳地区开始引进,随着技术发展和品种的成功改良,咸阳樱桃产业迅速发展^[1-2]。截至2021年,全市种植面积达到1000 hm²,产量5739 t^[3]。

目前,国内众多学者对樱桃生长与气象要素的关系进行了大量研究:朱秀红^[4]对2018年山东省五莲县甜樱桃减产的气象因素进行分析,并提出对策建议;李文巧等^[5]对影响勉县大樱桃品质、产量的主要气象灾害指标进行总结;张宏利等^[6]采用气候产量与气象要素相关分析等方法,对西

安灞桥樱桃花期低温阴雨、幼果硬核期春旱以及成熟期连阴雨造成的影响进行了详细研究;赵鑫等^[7]对影响樱桃产量的气象因子进行研究,建立了樱桃冻害等级预报模型;张永红等^[8]对陕西渭北地区樱桃花期冻害易发时期、最低气温、持续时间进行了研究,并提出有效防御措施。上述研究取得了一系列成果,但针对樱桃气象灾害的风险区划研究较少。咸阳南北地区海拔高度落差较大,地貌复杂,果农种植具有盲目跟风性,精细化管理水平参差不齐,造成樱桃产量与品质低下。为研究樱桃种植可能遭受的灾害性天气的影响,以咸阳市气象观测数据及樱桃产量数据为基础,运用二次指数平滑法、层次分析法、熵权法、组合

收稿日期:2024-02-19

作者简介:李云溪(1991一),男,汉族,陕西蒲城人,学士,工程师,研究方向为综合气象业务与农业气象。

基金项目:秦岭和黄土高原生态环境气象重点实验室开放基金课题(2023Y-14)

赋权法、加权求和法等方法,计算和分析了咸阳樱桃主要气象灾害危险性指数,并研制了灾害风险区划,以期为咸阳樱桃灾害防御和产业布局提供科学依据。

1 数据及方法

1.1 数据来源

采用咸阳市 12 个国家气象观测站 1991—2022 年的逐日气温、降水、日照等气象观测数据,三原站使用 2006—2022 年气象数据。气象数据来源于气象大数据云平台。2011—2021 年咸阳市樱桃产量数据及种植面积来源于咸阳统计年鉴。樱桃物候期观测数据来源于淳化县石桥镇、礼泉县城关街道、彬州市义门镇等樱桃主要产区田间调查,樱桃品种为布鲁克斯[9]。咸阳市 DEM数据来源于中国科学院计算机网络信息中心地理空间数据云。

1.2 研究方法

1.2.1 主要气象灾害的确定 为了研究咸阳樱

桃主要气象灾害风险区划,首先需要确定咸阳樱桃主要气象灾害。通过作物产量波动与气候条件的关系分离趋势产量与气候产量[10],公式可表示为

$$G_{t} = Y_{t} + Y_{w \circ} \tag{1}$$

式中 G_t 表示实际单位面积产量 $,Y_t$ 表示趋势产量 $,Y_w$ 表示气候产量。

利用二次指数平滑法^[10-11],推算逐年趋势产量,通过计算可以得到当年气候产量、相对气候产量。相对气候产量。相对气候产量(Y_r)表示作物产量偏离趋势产量的程度,公式可表示为

$$Y_{r} = \frac{Y_{w}}{Y_{t}} = \left[\frac{G_{t} - Y_{t}}{Y_{t}}\right] \times 100\%. \tag{2}$$

式中,当 Y_r 取正值时,表示气象因子有利于产量形成,即增产率;反之, Y_r 取负值时,则表明不利于产量形成,为减产率。参考粮食作物产量年景判断依据及增(减)产率指标基准^[12],确定樱桃丰歉年份,详见表 1。

	7414 12 10	1 (10) = (11) (10)	
年份	气候产量/(t/hm²)	相对气候产量/%	年景等级
2011	-0.20	-1.72	持平略减
2012	-2.00	-17.35	歉年
2013	-1.42	-12.43	歉年
2014	-0.22	-2. 24	持平略减
2015	-0.19	-6. 25	偏歉年
2016	1.32	42.58	丰年
2017	0.51	17.11	丰年
2018	-0. 37	-10.05	歉年
2019	-0.06	-1.64	持平略减
2020	0.27	7.75	丰年
2021	2. 19	62. 22	丰年

表 1 咸阳樱桃 2011—2021 年气候产量、相对气候产量及年景等级

参照相关文献^[6,8-9,13],分析咸阳地区常见气象灾害与歉收年份产量的关系,确定樱桃主要气象灾害为冬季低温冻害、春季花期冻害、成熟期阴雨灾害。通过咨询樱桃培育专家与实地灾情调查等方式,结合陕西地区樱桃生长气象致灾指标^[14],借鉴相关文献^[15-19],以年极端最低气温作为低温冻害指标、3月下旬—4月中旬日最低气温

作为花期冻害指标、5月下旬—6月中旬连续阴雨 日数作为阴雨灾害指标,得到咸阳樱桃主要气象 灾害风险等级,详见表 2。

1.2.2 危险性指数计算 利用层次分析法^[20]、 熵权法^[21-22]分别获取三类灾害轻、中、重度等级的主观、客观权重,再通过组合赋权法^[21-24]获取对应灾害等级的组合权重系数,见表 3。

表 2	咸阳樱桃主要气象灾害指标及风险等级标	/#
π ર Δ	风阳馁饥土女气象火吉徂阶及风咝妄纵阶	/生

灾害指标	轻度	中度	重度
年极端最低气温(低温冻害)/℃	[-20, -18)	(-22, -20)	(-∞,22]
3月下旬─4月中旬日最低气温(花期冻害)/℃	(-1.1,0]	[-2.8, -1.1]	$(-\infty, -2.8)$
5月下旬—6月中旬连续阴雨日数(阴雨灾害)/d	[2,3)	[3,4)	$[4,\infty)$

表 3 咸阳樱桃主要气象灾害各等级组合权重系数

气象灾害	等级	组合权重系数
	轻度	0.173
低温冻害	中度	0.298
	重度	0.529
	轻度	0.149
花期冻害	中度	0.249
	重度	0.602
	轻度	0.166
阴雨灾害	中度	0.236
	重度	0.598

组合权重^[25]系数既能反映同一类型灾害下,不同灾害等级对樱桃生长的危害程度,也可反映样本数据在不同灾害等级之间的差异性大小,一定程度上避免了主观性对评估结果的影响。同时,也可以根据灾害数据变化动态修订组合权重公式,适用于不断变化的气候背景^[22]。组合权重公式表示为:

$$w_{jk} = \frac{\sqrt{w_{1jk} \cdot w_{2jk}}}{\sum_{j=1}^{m} \sqrt{w_{1jk} \cdot w_{2jk}}}.$$
 (3)

式中: w_{jk} 表示第 k 类灾害第 j 个灾害等级的组合权重, w_{1jk} 表示第 k 类灾害第 j 个灾害等级的主观权重, w_{2jk} 表示第 k 类灾害第 j 个灾害等级的客观权重,m 为灾害级别总数。

危险性指数计算公式为:

$$I_{thk} = \sum_{j=1}^{3} (w_{ik} r_{ijk})_{\circ}$$
 (4)

式中: I_{vbk} 表示第 i 个站点第 k 类灾害的危险性指数,i 取值 1 至 12, w_k 表示第 i 个站点第 k 类灾害的组合权重, r_{ijk} 表示第 i 个站点第 k 类灾害的第 j 个灾害等级归一化处理后的年平均发生次数。

基于 GIS 技术,构建各站点主要灾害危险性 指数与经纬度、海拔高度等地理因素之间的空间 细网格推算模型,研制 30 m×30 m 咸阳樱桃主 要灾害风险区划。根据灾害类型,低温冻害与花期冻害选取反距离权重法(IDW)、阴雨灾害选取普通克里金法分别进行空间插值^[26]。

2 结果与分析

2.1 危险性指数分析

统计各站点三类灾害轻、中、重度等级的年平均发生次数并进行归一化处理,最后与对应灾害等级的组合权重进行加权求和,得到咸阳各站点低温冻害、花期冻害、阴雨灾害的危险性指数是27-28],如表4所示。由表4可知,各站点三类灾害危险性指数不尽相同。旬邑低温冻害危险性指数最高,长武次高,乾县、武功、三原危险性指数并列最低。旬邑花期冻害危险性指数最高,长武、旬邑、彬州、永寿、淳化较高,其余站点危险性指数较低,三原最低。永寿阴雨灾害危险性指数最高,长武、旬邑、彬州、淳化站点较高,其余站点危险性指数较低,三原最低。涂寿阴雨灾害危险性指数最高,长武、旬邑、彬州、淳化站点较高,其余站点危险性指数较低,礼泉最低。综上所述,长武、旬邑、彬州、永寿、淳化5站三类灾害的危险性指数高于其他站点。

表 4 咸阳各站点樱桃主要气象灾害危险性指数

計力		危险性指数	
站名	低温冻害	花期冻害	阴雨灾害
长武	0.584	0.731	0.556
旬邑	1.000	1.000	0.810
彬州	0.029	0.274	0.778
永寿	0.005	0.115	0.819
淳化	0.051	0.312	0.659
礼泉	0.019	0.048	0.211
乾县	0.000	0.047	0.292
武功	0.000	0.033	0.452
泾阳	0.005	0.022	0.347
兴平	0.005	0.041	0.344
秦都	0.009	0.098	0.239
三原	0.000	0.000	0.339

2.1 主要灾害风险区划分析

2.2.1 低温冻害风险区划 低温冻害高风险区 占咸阳总面积的8.1%,主要分布在旬邑县东北 部、淳化县北部等地区。该区域以土石山地为主, 冬季最低气温低,樱桃安全越冬有较高的风险,这 是制约上述地区樱桃种植的重要原因。中风险区 占咸阳总面积的22.8%,主要分布在长武县西北 部、彬州市西南和东北部,淳化县北部、永寿县中 北部、乾县中北部、礼泉县北部少量地区。该区域 位于海拔较高的黄土塬区、黄土高原梁状丘陵沟 壑区,在部分年份最低气温低于-20℃,樱桃越 冬存在一定风险。低风险区占咸阳总面积的 69.1%,主要分布在咸阳中南部县(市)区,包括武 功县、兴平市、秦都区、渭城区、泾阳县、三原县、乾 具、礼泉具大部、永寿具中南部、淳化具中南部,以 及彬州、长武部分区域。该区域包含关中平原、黄 土高原地势较低的沟谷地带、河流川道及大型水 库等,冬季最低气温高于-20 ℃,樱桃冬季低温 冻害风险较低。

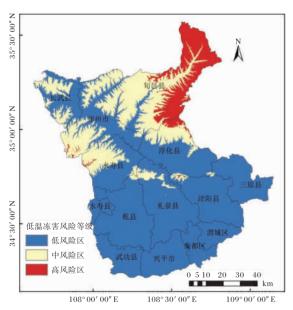


图 1 咸阳樱桃低温冻害风险区划结果 (审图号为 GS(2022)1061 号,下同)

2.2.2 花期冻害风险区划 花期冻害高风险区 占咸阳总面积的 19.4%,主要分布在旬邑县大 部、淳化县北部、彬州西南和东北部、长武西北部 等区域。该区域集中在在北部山地及黄土高原塬 梁沟壑区,春季降温过程中降温幅度最大,花期冻害风险高。中风险区占咸阳总面积的 32.6%,分布在长武大部、彬州市大部、淳化县大部、永寿县中北部,礼泉县中北部,泾阳县北部少量、三原县北部少量等区域,主要为黄土塬区以及黄土残塬区,上述地区花期冻害有一定风险。低风险区占咸阳总面积的 48.0%,主要分布在咸阳南部地区,包括武功县、兴平市、秦都区、渭城区、乾县大部、泾阳县大部、三原县大部、礼泉县中南部等区域,该区域花期冻害风险较低。由此可知,花期冻害中、高风险区占咸阳市总面积超过 5 成,影响范围大。

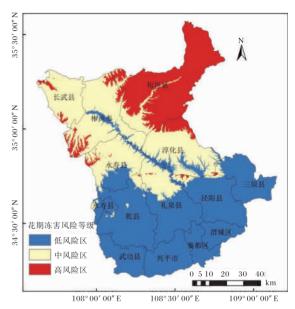


图 2 咸阳樱桃花期冻害风险区划结果

2.2.3 阴雨灾害风险区划 阴雨灾害高风险区面积占咸阳总面积的 34.4%,主要分布在咸阳北部县(市),包括旬邑县大部、长武县北部和西南部、彬州市西南和东北部、淳化县北部、永寿县西北部、礼泉县北部等地区,该区域主要包含北部山地以及黄土塬区。中风险区占咸阳总面积的28.7%,主要分布在长武县中东部、彬州市中部和东南部、淳化县中南部、永寿县中南部、乾县中北部、礼泉县中部、泾阳县北部少量区域以及三原县西北部少量区域。该区域主要为黄土高原地势相对较低的沟谷、黄土倾斜台状地等地区。低风险区占咸阳总面积的36.9%,主要分布在咸阳南部

平原区,包括武功县、兴平市、秦都区、渭城区、泾阳县大部、三原县大部、礼泉县中南部、乾县中南部等地区。阴雨灾害高、中风险区地势起伏,平均海拔较高,5—6月降水量多于邻近南部平原区,对樱桃产量与品质造成一定影响。

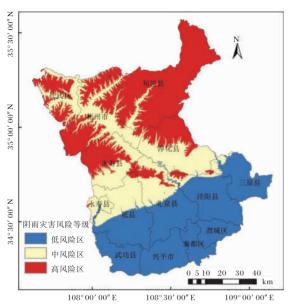


图 3 咸阳樱桃阴雨灾害风险区划结果

2.3 灾害风险区划检验

一般认为灾害较轻的地区更加适宜种植,作物产量越高。对比各县区 2017—2021 年樱桃平均年产量和主要灾害危险性指数(见表 5)可知,主要灾害危险性指数值越大的地区年平均产量越低。咸阳樱桃主要产区位于淳化南部、礼泉中南部、乾县南部、泾阳、兴平等地区,该区域主要灾害等级一般为轻度或中度,极少有重度灾害发生。由此可见,咸阳樱桃低温冻害、花期冻害、阴雨灾害风险区划结果与实际情况基本符合。

2018年4月上旬咸阳地区遭受强降温天气。 根据灾情点距离最近处气象站点观测数据得到的 花期冻害风险等级,与灾情点实际冻害等级、灾情 点所在区域花期冻害风险区划结果进行对比,发 现三者等级相同或相差1个等级,详见表6。发 生轻、中度花期冻害的地区主要分布在花期冻害 中风险及以下的区域,发生重度花期冻害的地区 主要在花期冻害高风险区域。因此,咸阳樱桃花 期冻害指标基本合理,风险区划结果与实际情况 基本符合。

表 5 咸阳樱桃 12 个站点主要灾害危险性指数与 2017—2021 年各县区年平均产量

站点	长武	旬邑	彬州	永寿	淳化	礼泉	乾县	武功	泾阳	兴平	秦都	三原
平均产量/t	0.0	0.0	91.2	0.0	1 396.4	635.0	249.2	11.6	394.6	452.4	133.0	82.4
$I_{ m vhl}$	0.584	1.000	0.029	0.005	0.051	0.019	0.000	0.000	0.005	0.005	0.009	0.000
$I_{ m vh2}$	0.731	1.000	0.274	0.115	0.312	0.048	0.047	0.033	0.022	0.041	0.098	0.000
$I_{ m vh3}$	0.556	0.810	0.778	0.819	0.659	0.211	0.292	0.452	0.347	0.344	0.239	0.339

注: Ivh1、Ivh2、Ivh3分别表示低温冻害、花期冻害、阴雨灾害的危险性指数。

表 6 2018 年 4 月上旬咸阳樱桃灾情点最近站点气温与花期冻害等级、实际冻害等级、风险区划结果对比

灾情点	日最低气温/℃	花期冻害等级	实际冻害等级	风险区划结果
兴平市丰仪镇丰仪村	-0.4	轻度	轻度	低
泾阳县兴隆镇兴隆村	-0.8	轻度	轻度	低
礼泉县城关街道裴寨村	-1. 3	中度	轻度	低
三原县嵯峨镇大盘村	-0.8	轻度	中度	中
彬州市水口镇白土村	-1.1	中度	中度	中
乾县注泔镇孔头村	-1. 4	中度	中度	中
淳化县石桥镇引安村	-3. 6	重度	重度	中
彬州市新民镇高家村	-4. 0	重度	重度	高
淳化县润镇薛家村	-7. 1	重度	重度	高

3 结论与讨论

- (1)咸阳樱桃主要气象灾害包含低温冻害、花期冻害与阴雨灾害。旬邑低温冻害危险性指数最高,乾县、武功、三原并列最低;旬邑花期冻害危险性指数最高,三原最低;永寿阴雨灾害危险性指数最高,礼泉最低。
- (2)低温冻害高风险区占咸阳市总面积的8.1%,主要分布在东北部土石山区;中风险区占咸阳总面积的22.8%,以黄土塬区、黄土高原梁状丘陵沟壑区为主。花期冻害高、中风险区分别占咸阳市总面积的19.4%、32.6%,高风险区主要为北部山地、黄土高原塬梁沟壑区,中风险区主要为黄土塬区以及黄土残塬区。阴雨灾害高、中风险区分别占咸阳市总面积的34.4%、28.7%,高风险区为北部山地及黄土塬区,中风险区主要为黄土高原沟谷地及黄土倾斜台状地。通过检验,灾害风险区划结果较为准确,可为咸阳樱桃灾害防御与产业布局优化提供参考。
- (3)在构建咸阳樱桃主要气象灾害风险区划时,未充分考虑气象灾害防御措施、环境脆弱性、土地性质等因素,且樱桃产量数据资料年代序列较短,灾害风险区划结果可能存在一定偏差,未来有待进一步研究。

致谢:感谢咸阳市园艺站查养良研究员,陕西 省气象局遥感与经济作物中心李艳莉高级工程 师,渭南市澄城县果业发展中心党小勇高级园艺 师给予指导!

参考文献:

- [1] 段宝定,王璞. 甜樱桃布鲁克斯的引种与栽培技术 [J]. 陕西农业科学,2014,60(11):123-125.
- [2] 胡晓望,查养良,苏勃海.咸阳市樱桃产业发展现 状及建议[J].山西果树,2014(4):48-49+57.
- [3] 咸阳市统计局. 2022 年咸阳市统计年鉴[A/OL]. 2022.
- [4] 朱秀红.2018 年五莲县甜樱桃减产的气象原因分析与对策[J]. 落叶果树,2019,51(5):59-61.
- [5] 李文巧,夏明安,严树斌,等. 勉县大樱桃主要气象 灾害指标及防御措施[J]. 陕西气象,2015(5):46-47.

- [6] 张宏利,解斌,廖小玲,等. 西安灞桥樱桃高产优质 气候适应性研究[J]. 北方园艺,2016(15):1-5.
- [7] 赵鑫,韩艳君,邸万通,等.樱桃低温冷害气象灾害预警体系研究[J].陕西农业科学,2021,67(9):55-58.
- [8] 张永红,葛徽衍,雪婷,等.樱桃花期冻害分析及气象防御适用技术探讨[J].陕西农业科学,2018,64 (4):67-70.
- [9] 杨映红,张丽君,刘瑾.'布鲁克斯'甜樱桃在甘肃天水的引种表现及关键栽培技术[J].中国果树,2020 (6):95-97.
- [10] 何虹,王巧娟,李亮,等.宁夏引黄灌区玉米趋势 产量与气候产量分离方法研究[J].灌溉排水学 报,2022,41(4):30-39.
- [11] 王慈光.二次指数平滑法中确定初始值的简便方法[J].西南交通大学学报,2004,39(3):269-271.
- [12] 主要粮食作物年景等级:QX/T335-2016[S].
- [13] 史兴民,陈楠,李雪萍,等.农户对气候变化与农作物关键物候期气象灾害的感知研究:以樱桃种植为例[J].河北师范大学学报(自然科学版),2024,48(3):225-233.
- [14] 周晓丽. 渭北大樱桃种植与气象[M]. 北京:气象 出版社,2016:18-134.
- [15] 张洪胜.现代大樱桃栽培[M].北京:中国农业出版社,2012:9-103.
- [16] 张开春,潘凤荣,孙玉刚,等.甜樱桃优新品种及配套栽培技术[M].北京:中国农业出版社,2015:19-151.
- [17] 樱桃花期气象冻害等级:DB1408/T019-2020[S].
- [18] 陈妍,张春秀. 乐都大樱桃灾害指标研究[J]. 农业技术与装备,2020,372(12):151.
- [19] 仇莉,孙智辉,姜宗祖,等.延安市沟壑区樱桃低温冻害风险区划研究[J].农业工程,2023,13(1):58-62.
- [20] 马耀绒,淡会星,王红军,等.基于层次分析法的 蒲城酥梨综合品质评价[J].陕西气象,2021(3): 45-48.
- [21] 赵思劼,赵晨羽,姜妮,等.基于 AHP-熵权法的 滇池环湖湿地效益评估研究[J].环境科学学报, 2024,44(4):411-420.
- [22] 谢捷,刘玮,徐月顺,等.基于 AHP- 熵权法的西宁地区汛期暴雨灾害风险评估[J].自然灾害学报,2022,31(3):60-74.
- [23] 孙朝锋,林雯,黄川容,等.华南芒果种植区寒冻

- 害危险性区划与评估[J]. 中国农业气象,2022,43 (7):563-574.
- [24] 董秉坤,郑陈柔雨,原源,等.基于 AHP-熵值组合赋权法的卷烟零售户信用评价模型研究[J].中国烟草学报,2023,29(5):104-111.
- [25] 吴量,向清才,陆庆.基于综合评价法的河池市雷电灾害风险区划[J].陕西气象,2019(6):24-29.
- 「26〕 王蕾,李华,王华. 中国葡萄气候区划Ⅱ:酿酒葡

- 萄品种区域化[J]. 科学通报,2017,62(14):1539-
- [27] 农业气象灾害风险区划技术导则: QX/T 572—2019[S].
- [28] 成林,郭康军,申晓晴,等. 冬小麦不完善粒气象 条件危险性指数研究[J]. 气象与环境科学,2024, 47(1):28-36.