文章编号: 1006-4354 (2004) 04-0028-02

西安市日供水量与气象要素的相关分析

李建科,高红燕,蔡新玲,徐 虹,贺 皓 (陕西省专业气象台,陕西西安 710015)

摘 要:水资源已成为制约城市发展的重要要素,合理调配使用水源,能有效减少物力和财力的浪费。利用西安市日供水量资料,分析西安市日供水量的季、月分布特征,对逐日供水量与温度、降水、日照气象要素相关分析,选取相关较好的日平均值作预报因子,建立日供水量的简易预测模型。

关键词:日供水量;气象要素;预测模型

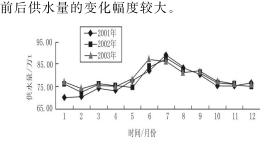
中图分类号:P49

文献标识码:B

随着城市化进程不断加快,人民生活水平的不断提高,城市生活用水不断加大。西安地处内陆,水资源短缺,夏季高温酷热,城市热岛效应不断加强,自来水供需矛盾日益突出。从供水量与气象要素相关较好的气象因子着手,分析研究西安市日供水量与气象因子的关系,为自来水公司合理调度提供一定依据。是为拓展专业气象服务领域提供理论基础,实现气象服务的专业化水平,提高服务信息的科技含量。

1 资料来源及处理方法

收集西安市自来水公司 2000 年 11 月—2003 年 10 月逐日供水量,首先分析西安市日供水量的季、月分布特征(见表 1),对逐日供水量与气象因子进行相关普查,将相关性较好的因子选出,进行回归计算,建立简易预测模型^[1]。


表 1 西安市季日平均供水量及偏差 104t

年	冬	春	夏	秋	平均
日平均	2001	72.66	74.79	84.57	77.26
	2002	74.85	75.06	84.49	78.34
	2003	75.21	76.29	84.54	79.18
偏差	2001	-4.30	-2.17	7.61	0.30
	2002	-2.96	-2.75	6.68	0.53
	2003	-3.29	-2.21	6.04	0.68

2 日供水量的月、季分配

由图 1 可见,西安市月平均供水量 7 月最大,

2月最小,3月开始逐渐增多,7月达高峰,以后逐渐减少,2月降到最低。随着温度的升高,供水量不断增大。7月供水量大的原因是西安夏季天气炎热,防暑降温用水较多。2月份供水量小,11、12、1月次之,是因为天气寒冷,春节期间生产单位放假,生产规模小,用水量少,使平均日供水量减少。3a变化规律比较一致,且变幅不大。由图2可看出,西安月平均供水量的偏差(月平均日供水量与年平均日供水量的差)6—9月为正,其余各月为负,说明日供水量变化6到9月最为明显,与高温有密切的关系。西安供水量夏季最大,偏差最大,秋季的供水量也较大,但偏差最小,冬季供水量最小,但偏差较大,分析认为,西安夏季高温酷暑,秋季温度也较高,生活用水自然要多一些,

冬季低温寒冷,供水量的偏差应较为稳定,但春节

图 1 西安供水量的月变化曲线

收稿日期: 2003-12-21

作者简介:李建科(1979-),男,陕西凤翔人,助工,从事专业天气预报及研究工作。

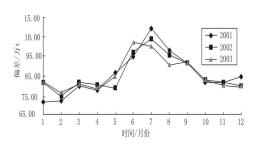


图 2 西安月平均日供水量的偏差变化曲线

根据分析,认为日供水量与气象要素中温度、 日照、降水有联系。

3 相关普查

表2可看出:日供水量与气温有明显的正相关,温度愈高,供水量越大。从季节看,平均气温、最高气温、最低气温夏季呈显著性相关,冬季相关性较差。日照时数与日供水量呈正相关。供水量与降水量存在负相关,降水愈多,供水量越少。由于供水量资料年代较短,降水本身不稳定,日降水量预测的可靠性较弱,因此未被选为日供水量的预报因子。

表 2 日供水量与气温、降水量、日照时数的相关系数

月	最低 气温	最高 气温	平均 气温	日照 时数	降水量
1	0.03	0.37	0.21	0.31	-0.19
2	0.22	0.32	0.29	0.19	0.03
3	0.14	0.22	0.23	0.31	-0.08
4	0.56	0.75	0.78	0.59	-0.13
5	0.54	0.78	0.88	0.44	-0.41
6	0.49	0.58	0.69	0.41	-0.25
7	0.78	0.79	0.84	0.47	-0.34
8	0.72	0.82	0.86	0.50	-0.48
9	0.63	0.78	0.80	0.56	-0.33
10	-0.01	0.61	0.40	0.59	-0.43
11	-0.18	0.67	-0.05	0.25	-0.03
12	-0.34	-0.04	-0. 09	0.48	-0. 33

其实,温度、降水和日照3要素是互相联系的,如果阴雨天,日照弱,气温低,有降水,日供水量则明显减少;反之,大晴天,日照充分,气温高,无雨,日供水量则明显升高。研究日供水量与气象要素之间的关系,是为了建立预报模型,平均气温与日供水量的相关性最好,选取平均气温作为预报因子。

4 日供水量预报模型的建立

用 2001、2002 年 4 到 9 月逐日平均气温为自变量 (\overline{T}) ,供水量 (Y) 为因变量,建立以下回归方程:

 $Y_4 = 71.26 + 0.290 1\overline{T}$

 $Y_5 = 53.42 + 1.076\overline{T}$

 $Y_6 = 43.70 + 1.439 \ 0\overline{T}$

 $Y_7 = 54.26 + 1.163 \ 3\overline{T}$

 $Y_8 = 54.00 + 1.120 \ 3\overline{T}$

 $Y_9 = 57.96 + 1.0857\overline{T}$

对于 11 月、12 月、1 月、2 月,大多数居民家里都有供暖设备,其室内温度的变化幅度较小,居民用水量变化不大,故不能用气象因子来预测日供水量。

5 小结

5.1 西安市日供水量夏季最大、其次是秋季和春季,冬季最小。

5.2 西安市日供水量与温度、日照为正相关,与 降水量为负相关,其中以平均气温的相关性最好。 5.3 利用日平均气温为预报因子的日供水量简

易预测模型。

参考文献:

[1] 魏 静,陈正洪.武汉市日供水量与气象要素的相互关系「J].气象,2000,26(11):27-29.