文章编号: 1006-4354 (2006) 02-0036-05

宝鸡热电厂近地层温度场、风场及大气 稳定度特征分析

陈建文,刘敏茹,何晓媛

(陕西省气象科学研究所,西安 710014)

摘 要:根据 2005-03-12—28 在宝鸡热电厂建设区取得的大气边界层污染气象资料,以及 MM5 中尺度气候数值模式,模拟了 2004-07-13—27 地面至 1 500 m 范围大气边界层温度场、风场资料,分析评价区近地层风场特征和温度场层结特征,为电厂工程设计、建设布局及大气污染治理提供依据。根据 MM5 模式模拟结果,能较好反映近地层大气温度层结和风场主要特征,说明 MM5 模式在近地层大气温度和风模拟中,有一定的应用前景。

关键词:边界层;污染气象;特征分析

宝鸡热电厂 2×300 MW 工程建设区位于宝

鸡市陈仓区底店,地处千河河谷,位于107°16′E、

中图分类号: P421

文献标识码: B

34°23′N,海拔高度约560 m,与陈仓区气象站相 距约6 km,河谷为西北一东南走向。为了解建设 区污染气象条件及变化规律,于2005-03-12— 28 在建设区设置大气探测点,对建设区的低空风 场、低空温度场等,进行每日8次(02、07、09、 11、14、17、19、21 时)实地观测。并运用 MM5 中尺度气候数值模式,模拟了2004-07-13—27 地面至1500 m 范围大气边界层温度场、风场。对 资料进行统计、计算,分析评价区近地层温度层结特征、近地层风场特征及混合层特征、不同大 气稳定度分布频率等。

1 低空温度场特征

- 1.1 温度场基本特征
- 1.1.1 3 月温度场基本特征 3 月, 地面最高气温出现在 17 时, 为 8.2°C, 最低气温出现在 07

时,为-0.2°C。从地面到 1 500 m 高度层,日平均气温变化范围为-4.1~4.3°C。日平均温度递减率为 0.56°C/hm,夜间 02 时平均温度递减率

收稿日期: 2005-10-11

的对城市热岛效应进行监测研究。

作者简介: 陈建文(1967-), 男, 陕西南郑人, 高工, 主要从事大气环评、气候分析及应用研究。

4.2 咸阳市有明显的城市热效应,热岛呈多中心非均匀特征,中部最强,东西较弱,热岛总体效应可由强、弱程度不同的次生热岛"合成"。春季思想,京东西、新、京东和对

是热岛效应发展最强的季节,夏、秋、冬季相对 较弱。热岛效应有明显的日变化。咸阳市由东至

西分布有 4 至 5 个热中心,市区北部的温度变化 梯度非常明显,市区北面有多个冷中心,市区南 部的温度变化梯度相对较小,与咸阳市自然地理

部的温度变化梯度相对较小,与咸阳市自然地理 环境和城市功能分布相吻合,表明热岛效应明显 受地理环境的影响,其影响范围可达 $70 \sim 80$ km²,是咸阳市城区面积的 $1.63 \sim 1.86$ 倍。

参考文献:

- [1] 刘玉洁,杨忠东. MODIS 遥感信息处理原理与算法 [M]. 北京: 科学出版社, 2001: 198-201.
- [2] 董超华,章国材,邢福源,等.气象卫星业务产品 释用手册「M].北京:气象出版社,1999:181-186.
- [3] 刘安麟,范建忠,刘海英,等.农业遥感与农业气象研究[M].北京:气象出版社,2000:53-54.


天 17 时达到最大,为 0.78°C/hm。300 m 以下受 湍流热交换影响较大,气温日振幅较大,300 m 以 上受湍流热交换影响较小。1 000 m 以下各高度

最小,为 0.31°C/hm,并随时间推移逐渐增大,白

层最低气温出现在 07 时,最高气温出现在 17 时; 1 000 m 以上平均最高气温出现在 19 时,最低气 温出现在 07 时。从图 1 看, 19 时到次日 07 时接

地逆温明显,09-14时低空逆温较强;平均最高 气温, 02 时在 105 m 高度, 07 时在 75 m 高度, 09、11、14 时在地面, 19 时在 25 m 高度, 21 时

在 75 m 高度。 1500

1.1.2 7月温度场基本特征 7月,地面最高气 温出现在 14 时, 为 28.7°C, 最低气温出现在 05 时,为21.2°C,平均气温24.0°C。从地面到1500

m 高度层,日平均气温变化范围为 10.8~28.7 °C。19 时到次日 05 时平均最高温度出现在 50 m

高度,其余时间在地面。由于湍流热交换能力较 强,100 m 以下受湍流热交换影响较大,气温日振 幅较大,100 m 以上受湍流热交换影响较小,温度

变化明显趋缓。各高度层最低气温出现在 07 时,

200 m 以下最高气温出现在 14 时, 200~800 m 高度最高气温出现在14时,800~900 m高度最 高气温出现在 21 时,900 m 以上出现在 19 时。从

图 2 看,19 时到次日 07 时接地逆温明显,日平均

温度递减率为 0.838°C/hm, 05 时平均温度递减 率最小,为 0.682°C/hm,并随时间推移逐渐增 大,14 时达到最大,为1.115°C/hm。

1.2 逆温特征 逆温的时间变化特征 3月接地逆温从

1.2.1 19 时前开始形成,随后,出现频率、厚度和强度 1000 500 02时 05时 07时 11时 14时 19时 21时 23时 时间/时 宝鸡热电厂7月各时刻拟合平均温度廓线

随时间变化逐渐增大,到次日02时出现频率和厚

度达最大;07时厚度开始减小,但强度达到最大;

随后逐渐消散,到09时全部消散。09-17时基本 不出现接地逆温。低空逆温在 07-14 时前后出现 较为频繁,09-11时最为频繁,17时到次日的02 时出现较少。日出后,随着地面吸收太阳辐射逐 渐增温,接地逆温逐渐离开地面形成第一层低空 逆温,随后底部高度逐渐抬高,强度逐渐增大,厚 度逐渐减小,14时底部高度最高;19时前后,接 地逆温逐渐形成, 低空逆温底部高度逐渐下降 (见表 1)。

渐减小,厚度基本维持在50.0 m,强度逐渐增大, 02 时强度达最大,07 时后开始逐渐消散,09-17 时基本不出现接地逆温。由于太阳辐射强烈,对 流旺盛, 低空逆温出现频率、强度和厚度均低于 3月。低空逆温在02-11时之间出现,14时到23

7月接地逆温从19时前后开始形成,随后,

出现频率、厚度和强度随时间变化逐渐增大,到

23 时出现频率和厚度达最大,之后,出现频率逐

逆温厚度在 100~200 m 之间; 逆温底部高度在 350~650 m 之间 (见表 2)。 1.2.2 逆温的空间变化特征 3月观测期间接

时基本不出现; 逆温强度 07 时最强, 05 时最弱;

地逆温出现较为频繁,频率48.9%,平均强度 1.21 °C/hm,厚度 300 m 以下,有时可延伸到 400

m,500 m 以上没有接地逆温出现。厚度 100 m 以

下的接地逆温出现频率最高,其次为高度 100~ 200 m 的接地逆温,厚度 300 m 以上的接地逆温

很少出现,观测期间只出现2次,其强度相对较 小。低空逆温也较为频繁,各高度均有出现,但

温

НŢ 间

底高/m

肘 间 91 时

780.7

23 时

的低空逆温强度最小,底高 200~300 m 的低空

17 时

803.5

19 时

现相对较少,但平均逆温强度大于第一层,其平均

出现频率为 26.4%, 平均底部高度 676.2 m, 平均

厚度 100.2 m, 平均逆温强度 0.56 °C/hm。夏季第

一层低空逆温出现较少,平均出现频率 9.4%,平

均底部高度 450.0 m, 平均厚度 125.0 m, 平均逆

温强度 0.59°C/hm; 第二层低空逆温基本没有出

现。可见,3月一、二层低空逆温均比夏季出现频

10 时

818.8

21 时

厚度和强度均不大。底高 100 m 以下的低空逆温

02 BJ

622.0

02 时

强度最大,但厚度最小,底高在300~400 m 之间 逆温厚度最大(见表3)。

517.1

宝鸡热电厂 3 月逆温时间变化特征值

	H.1 1H1	02 HJ	07 нд	ОЭ на	11 н1	14 41	т. н.1	19 нђ	71 HJ
接地逆温	频率/%	92	73	0	0	0	0	60	90
	强度/ (°C/hm)	1.13	1.68					0.49	1.44
	厚度/m	190.0	104.1					64.2	130.0
低空	频率/%	42	64	90	82	55	46	40	50
	强度/ (°C/hm)	1.06	0.62	0.77	1.01	1.25	0.49	0.98	0.44
逆	厚度/m	79.0	123.7	100.3	113.8	89.0	123.0	86.3	124.3

5.执中厂 7.日送进时间亦化特尔值

524.4

625.0

1 007.0

12 2	포스	9 KK 48 7	177	Z: /EE H') U	又化竹川	LIE
05 П	H	07 时	-	11 时	14 B	付

接	频率/%	44	56	330	0	33	78	90	
地 逆	强度/ (°C/hm)	4.97	4.58	3.06			1.88	3.24	2.65
温	厚度/m	50.0	50.0	50.0			50.0	65.0	70.0
低	频率/%	22	11	11	22	0	0	0	0
空	强度/ (°C/hm)	0.62	0.28	0.78	0.65				
逆	厚度/m	125.0	200.0	100.0	100.0				
温	底高/m	650.0	350.0	350.0	350.0				
									<u> </u>

宝鸡热电厂 3 月不同高度层逆温出现频率及强度

	尚度/m	<100	$100 \sim 200$	$200 \sim 300$	$300 \sim 400$	$400\sim500$	>500
接地	出现频率/%	16.1	12.6	8.0	1.1	1.1	
	平均强度/ (°C/hm)	1.56	1.17	1.45	1.13	0.74	
	最大强度/ (°C/hm)	3.70	1.68	1.77			
低空	出现频率/%	6.9	5.7	4.6	9.2	4.6	14.9
	平均强度/ (°C/hm)	0.94	0.79	0.82	0.47	0.62	0.90
	最大强度/ (°C/hm)	1.50	2.00	2.33	1.11	1.00	1.93
	平均厚度/m	59.2	82.0	145.0	75.6	102.5	110.8

厚度 167.3 m (见表 4)。

1.3 低空逆温特征比较

3月第一层低空逆温出现较频繁,平均出现频

7月接地逆温平均出现较少,出现频率

38.9%,平均强度 2.80°C/hm,厚度 200 m 以下,

200 m 以上没有接地逆温出现。低空逆温主要出

现在底高 200~500 m, 出现频率 11.6%, 平均强

度 0.60°C/hm, 平均最大强度 1.11°C/hm, 平均

率 58.6%,平均底部高度 415.9 m,平均厚度 99.7 m,平均逆温强度 0.45°C/hm;第二层低空逆温出 地层污染物垂直扩散能力弱于夏季。

繁,夏季第二层低空逆温基本没有出现,第一层低 空逆温底高、厚度和强度略大于3月。表明3月近

宝鸡热电厂 7 月不同高度层逆温出现频率及强度 表 4

	高度/m	<100	100~200	200~300	300~400	400~500	>500
拉山	出现频率/%	36.1	2.8				
接地 逆温	平均强度/ (°C/hm)	3.24	2.35				
芝血_	最大强度/ (°C/hm)	7.40	3.61				
	出现频率/%	0.0	0.0	1.4	4.2	4.6	1.4
低空	平均强度/ (°C/hm)			0.98	0.47	0.62	0.32
逆温	最大强度/ (°C/hm)				1.11	1.00	
	平均厚度/m			250.0	166.7	102.5	150.0
2 近地	1层风场特征				7.6 m/s; <i>V</i>		
2.1 主	. 导风向及主导风向下的	的平均风速		风(E),频	率 12.8% , ⁵	平均风速 5.9	m/s \circ 200 m
	月,近地层 50~100 m	高度层主导风向为东东南风 (ESE), 频率					
北风为日	主,在 150~1 500 m 高	5度之间,主	三导风向	38.8%, 平均风速 7.9 m/s; 次多风向为东风			

以东南风(SE)为主,次多风向基本以东东南

(ESE) 风为主。50 m 高度层主导风向为北风

(N), 频率 12.4%, 风速 2.0 m/s; 次多风向为东

东南风 (ESE), 频率 11.3%, 风速 4.2 m/s。100 m 高度层主导风向为北西北风 (NNW), 频率 14.6%,平均风速 2.1 m/s,次多风向为东东南风

(ESE), 频率 11.5%, 平均风速 5.0 m/s。150 m 高度层主导风向以东东南风(ESE)为主,频率 14.6%, 平均风速 5.7 m/s; 次多风向为东南风

(SE), 频率 11.5%, 平均风速 4.4 m/s。200 m 高 度层主导风向以东东南风(ESE)为主,频率 14.6%, 平均风速 5.8 m/s; 次多风向为东南风

(SE), 频率 12.5%, 平均风速 4.6 m/s。400 m 高 度层主导风向为东南风(SE),频率24.2%,平均

风速 6.2 m/s, 其次为东东南风 (ESE), 占 10.5%, 平均风速 5.8 m/s。600 m 高度层主导风 向为东南风(SE), 频率 21.5%, 平均风速 6.9 m/

s;次多风向为东东南风(ESE),频率 16.1%,平 均风速 5.6 m/s。 7月,近地面 50~500 m 高度主导风向和次

主导风向以偏东风为主,550~1500 m 高度最多 风向和次多风向以偏南风为主。50 m 高度层主导 风向为东东南风 (ESE), 频率 32.9%, 平均风速

(ESE), 频率 38.4%, 平均风速 7.1 m/s, 次多风

向为东风(E), 频率 12.8%, 平均风速 5.5 m/s。

150 m 高度层主导风向以东东南风(ESE)为主,

6.0 m/s。100 m 高度层主导风向为东东南风

主,频率为 31.8%,08 时以东风(E)为主,频 率为 21.6%, 11 时以北风(N)为主,频率为

利于水平扩散。

2.3.1 风向 3月,02时以北西北风(NNW)为

2.3 低空风的日变化

(E), 频率 11.9%, 平均风速 6.2 m/s。400 m 高

度层主导风向为东东南风(ESE),频率 18.7%,

平均风速 9.0 m/s, 其次为东南风 (SE), 频率

17.8%, 平均风速 6.5 m/s。600 m 高度层主导风

向为东东南风(ESE), 频率 13.2%, 平均风速

10.5 m/s;次多风向为南西南风(SSW),频率

3月,50~450 m以下平均风速随高度增加

较快,风速由 2.4 m/s 增加到 4.3 m/s。之后,平

均风速随高度波动变化,并呈缓慢增加的趋势。

450 m 以上风速随高度的变化较小,大气污染物

容易扩散。根据数值模式模拟结果,7月,50~400

m 以下平均风速随高度增加较快,风速由 4.7 m/

s 增加到 6.9 m/s。400 m 以上大气污染物容易扩

散。可见,风速随高度呈指数增长,并在近地层

变化较大,不利于大气污染物的垂直扩散,但有

18.3%, 14-20 时以偏东南风居多, 其中南东南

风(SSE)占25.0%,东东南风(ESE)占14.6%。

7 月,11 时以东风 (E) 为主, 频率为 39. 8%,23

时以南东南风(SSE)为主,频率为29.2%,其

余时间以东东南风 (ESE) 为主, 各时次频率, 02

11.9%, 平均风速 6.5 m/s。

2.2 风速廓线

时为 36.1%, 08 时和 14 时均为 37.0%, 20 时占 39.2% 2.3.2 风速 3月风速有着明显的日变化。50 m

高度 14 时风速最大,为 3.0 m/s;02 时风速最小, 为 1.5 m/s。200 m 高度仍以 14 时风速最大,为 3.9 m/s, 02 时风速最小, 为 1.8 m/s。日风速呈 波动变化。400 m 高度层平均风速仍然在 02 时最

小,但最大风速出现在 08 时。600 m 高度的风速 变化与 400 m 高度趋势相似,最大值出现在 08 时,为 5.2 m/s。600 m以上平均风速逐渐减小, 02 时出现最小值,为 2.7 m/s。7 月平均风速的日

变化在各高度层表现一致,08时风速最小,14时 最大,且随高度升高风速加大。可见,风速与湍

流交换关系密切,其强度决定向上传递速度。

大气稳定度是研究大气扩散规律和湍流运动

的重要气象参数。根据 Pasqull 分类, 四季中, 中

性类(D)和稳定类(E-F)出现频率均较高在

3 大气稳定度

30%以上; 不稳定类 (A-B) 和弱不稳定类 (C) 出现频率均较低在 20%以下。A-B 类出现 频率以夏季为最大占19.3%,其次是春季占 13.3%, 秋季为11.8%, 冬季最小为6.0%; C类 以夏季较频繁为14.1%,其次是冬季和春季均占 11.3%, 秋季出现频率较小为 6.0%; D 类以春季 出现最多为 44.6%, 其次为秋季占 39.3%, 夏季 为 37.2%, 冬季最少为 30.5%; E-F 类以冬季 出现最多出现频率达52.1%,其次为秋季占 41.4%, 春季 30.8%, 夏季最少为 29.4%。总体 来看,中性类和稳定类出现频率均较高,不稳定 类和弱不稳定类出现频率较低,不利于大气污染 物扩散;另外,由于冬、夏两季太阳辐射量差额 较大, 使得两季大气湍流运动强弱差异甚大, 冬 季的 E-F 类频率远大于夏季,而冬季的 A-B 类频率又远小于夏季,这正是冬季大气污染较夏 季严重的重要原因之一。

4 各风向、风速下稳定度频率

根据陈仓区气象站 2001-2003 年气象资料, 冬季在主导风向 W-NW 流型下, E-F 类总频

当风速为 1.6~3.0 m/s 时频率 14.5%。在 E-ESE 风向下, E-F 类总频率 9.7%, 其中当风速 <1.5 m/s 时频率 3.8%, 当风速为 $1.6\sim3.0 \text{ m/s}$

率 24.8%, 其中当风速<1.5 m/s 时频率 9.2%,

s 时频率 4.4%。其次是 D 类,总频率 6.5%,其 中, 当风速为 1.6~3.0 m/s 时频率 3.4%。 夏季在主导风向 ENE-ESE 流型下, E-F

类总频率 8.9%, 其中当风速< 1.5 m/s 时频率 2.9%, 当风速为 1.6~3.0 m/s 时频率 4.9%。在 WSW-WNW 风向下, E-F 类总频率 9.3%, 其

中当风速<1.5m/s 时频率 2.6%, 当风速为 1.6 $\sim 3.0 \,\mathrm{m/s}$ 时频率 6%。D 类总频率 13.1%,其中, 当风速 1.6~3.0 m/s 时频率 6.5%。

混合层特征

大气边界层中,大气热力和机械湍流的共同 作用形成混合层,它是热力和机械湍流共同作用 的结果,混合层高度是反映大气扩散能力的重要 物理量。

3 月弱不稳定类 (C) 混合层高度最大, 平均 高度为 1 621.7 m,最大高度为 2 141.9 m;其次 为不稳定类 (A、B), 平均高度为 1 248.6 m, 最 大值为 3 134.5 m; 中性类 (D) 混合层高度显著 降低,平均为371.4 m,最大高度为1385.0 m; 稳定类(E、F)混合层高度最低,平均仅为140.3 m,最大高度也只有258.0 m。

平均高度为 1 740.1 m, 最大高度为 2 839.3 m; 其次为不稳定类(A、B),平均高度为1153.1m, 最大值为 3 134.5 m; 中性类 (D) 混合层高度显 著降低,平均为 557.4 m,最大高度为 1 385.0 m; 稳定类(E、F)混合层高度最低,平均仅为135.0 m, 最大高度也只有 365.9 m。

可见,宝鸡热电厂建设项目所在地7月和3

夏季,仍以弱不稳定类(C)混合层高度最大,

月太阳辐射、地面逆辐射均较强,温度的垂直梯 度和时间变化较大, 使得大气热力和湍流运动较 强,不稳定度和弱不稳定度条件下,混合层高度 均较高,有利于大气污染物的垂直扩散、输送。